Helicoverpa Zea(鳞翅目:夜养科)是北美洲和南美主要种植作物的害虫。该物种适应了不同的宿主植物,并对几种杀虫剂产生了抗性,包括苏云金芽孢杆菌(BT)杀虫蛋白在转基因棉和玉米中。Helicoverpa Zea种群在热带和亚热带地区全年持续存在,但是季节性迁移到温带地区增加了相关作物损害的地理范围。为了更好地了解这些生理和生态特征的遗传基础,我们为来自BT抗性菌株的单个H. Zea雄性HAZSTARK_CRY1ACR生成了高质量的染色体水平组装。HI-C数据用于将最初的375.2 MB重叠组装脚手架成30个常染色体和Z性染色体(支架N50 = 12.8 MB和L50 = 14)。SCAF折叠组件是通过新型管道PolishClr对错误校正的。线粒体基因组通过改进的管道组装并注释。对该基因组组装的评估表明,鳞翅目基准通用单拷贝直系同源物集的98.8%是完整的(98.5%作为完整的单副本)。重复元素约占组装的大约29.5%,其多数(11.2%)被归类为恢复元素。这个针对H. Zea的染色体规模参考组件,Ilhelzeax1.1,将促进未来的研究,以评估和增强可持续的作物生产实践。
真菌是生活中最多样化,最重要的王国之一。然而,真菌的分布范围在很大程度上尚不清楚,而生态机制塑造了它们的分布1,2。为了提供真菌的空间和季节性动态的综合视图,我们实施了真菌孢子的全球分布式标准化空中采样3。仅在一个气候区域内检测到了绝大多数操作分类单元,并且物种丰富度和社区组成的时空模式主要通过年平均空气温度来解释。热带区域拥有最高的真菌多样性,除了地衣,eri骨霉菌和外生菌骨真菌,在温带地区达到了峰值多样性。气候反应的敏感性与系统发育相关性有关,这表明某些真菌基团的大规模分布受其祖先利基市场的部分约束。季节性灵敏度中存在强烈的系统发育信号,这表明某些真菌仅在短时间内保留了孢子形成的祖先特征。总的来说,我们的结果表明,真菌的超多元王国遵循全球高度可预测的空间和时间动态,物种丰富度和社区组成的季节性随纬度而增加。我们的研究报告类似于其他主要生物群体所描述的模式,从而为长期以来关于微生物生活方式的生物是否遵循以宏观生物而闻名的全球生物多样性范式4,5为辩论做出了重大贡献。
• 全球亚热带和温带地区干旱期的频率和长度正在增加。表观遗传对水分胁迫的反应可能是植物抵御这些难以预测的挑战的关键。实验性 DNA 去甲基化与应激因子的应用相结合是揭示表观遗传学对植物应激反应贡献的适当策略。• 在温室中,我们分析了用 5-氮杂胞苷对种子进行去甲基化和/或反复受水胁迫后,一年生地中海草本植物 Erodium cicutarium 成年植株叶片胞嘧啶甲基化的变化。我们使用亚硫酸盐 RADseq (BsRADseq) 和新报道的 E. cicutarium 参考基因组,以 2 9 2 因子设计表征甲基化变化,控制植物相关性。 • 从长期来看,仅用 5-氮杂胞苷处理会导致单个胞嘧啶的低甲基化和高甲基化,在 CG 环境中会出现显著的低甲基化。在对照条件下,干旱导致除 CHH 环境中所有环境中的甲基化减少。相反,经历反复水胁迫并用 5-氮杂胞苷处理的植物的基因组使 DNA 甲基化水平增加约 5%。• 种子去甲基化和反复干旱在整体和特定环境中的胞嘧啶甲基化方面产生了高度显著的相互作用。大多数甲基化变化发生在基因区域周围和转座因子内。这些与基因相关的差异甲基化区域的注释包括几个在应激反应中具有潜在作用的基因(例如 PAL、CDKC 和 ABCF),证实了表观遗传在分子水平上应对应激的贡献。
ulva是一个绿色宏观属,具有丰富的物种多样性和全球分布。虽然当前对ULVA多样性的知识集中在温带地区,但热带和亚热带地区的遗传和形态数据却很少,并且物种丰富度并未明确定义。该属以其绽放形成的能力而闻名,可以引起绿色潮汐,从而造成严重的环境和经济损害。在过去的二十年中,Ulva spp的几个重要盛开。已经发生在新喀里多尼亚,需要进一步研究以识别所涉及的物种。由于对新喀里多尼亚的ULVA多样性的了解是有限的,因此对Ulva spp的更新。该地区的库存至关重要。Based on Ulva specimens collected throughout New Caledonia (Grande Terre, Isle of Pines and Loyalty Islands), we (1) reassessed species diversity using species delimitation methods, (2) analysed morpho-anatomical characters to identify species and/or enrich their diagnosis, and (3) reconstructed a multilocus phylogeny (ITS, rbcL, tufA) of the genus.我们在我们的数据集中发现了21种二级假设(SSH),从中,有5个成功分配给了U. lactuca,U。Ohnoi,U.Tepida,U.Tepida,U.Meridionalis和U. Taeniata。十个SSH被定义为我们提供的分类学描述的新物种,另外六个SSH是单身人士,需要数据富集以更好地解释。我们的串联多焦点矩阵包括61种ULVA物种。在新喀里多尼亚发现了15种,并得到适度的支持。在新喀里多尼亚发现了十种新物种。在新喀里多尼亚发现的ULVA物种中,已知有7种是开花的,这突出了对严格调节和定期监测水质的需求,尤其是在暴露于强大的营养输入的地区,这些物种可以形成绿色的潮汐。重点介绍了新喀里多尼亚的Ulva多样性重新评估了15种。土著物种在新喀里多尼亚引起了最近的绿色潮流。
全球变暖预计将导致整个陆地表面的陆地储水(TWS)变化,对生态系统和社会产生广泛影响。尽管已经进行了广泛的研究来分析TWS变化和可能在2000年后的驱动因素,但TWS和相关的Envi Ronmental强迫的长期演变仍然相对尚未探索。在这项研究中,我们评估了能源Exascale地球系统模型(E3SM)土地模型ELM版本1(ELM V1)在模拟全局TWS中的性能,并使用ELMV1的阶乘模拟来量化1948 - 2012年期间的全球TWS变化及其驱动因素。我们发现,ELM在温带地区不受灌溉影响的温带区域中现有的卫星和重建数据集的同意。在1948年至2012年期间,Biome和气候区平均TWS主要以0至10毫米/年的速率增加,但是该时期的下半年的正趋势比上半年甚至负面趋势更小。气候变化解释了大多数生物群落和气候区域的TWS趋势的80%,其次是土地使用和土地覆盖率的变化。CO 2的生理和物候效应主要引起了不同纬度的更潮湿的生物群落和气候区域中明显的TWS趋势。相比之下,氮depo地位和气溶胶沉积通常在生物群落和气候区域中产生较小和负面影响。P,E和Q中的累积降解异常也经常做出显着贡献,而P,E和Q之间的趋势差异很小。在分析的气象驱动因素中,降水(P),蒸发(E)和径流(Q)之间的长期平均失衡占大多数生物群落和气候区域中TWS趋势的50%> 50%,而非线性是非线性的,而非线性是由E/P和Q/Q/P ratios的空间上源性变化引起的。一起,这些发现揭示了对全球TWS及其多种多样的气候变化模式和不同的非绘画人类引起的变化的强化,这有助于对全球水周期的更全面地理解和投射。
bumblebees(bombus spp。)在欧洲,美国和亚洲广泛分布,温带地区最为显着的多样性。尽管它们主要与凉爽的气候相关,但某些物种适用于较温暖的地区,例如地中海地区,亚洲低地热带地区以及中部和南美洲的部分地区(Williams等,2008; Goulson,2009)。However, their species richness is the lowest in neotropical regions, including Brazil, which hosts only eight species: Bombus bahiensis Santos Ju ́ nior et al., 2015 , Bombus bellicosus Smith, 1879, Bombus brasiliensis Lepeletier, 1836, Bombus brevivillus Franklin, 1913, Bombus morio (Swederus, 1787), Bombus Pauloensis Friese,1913年,Bombus Rubriventris Lepeletier,1836年和Bombus Transsersalis(Olivier,1789年)。这些物种都不分布在整个巴西领土上,其人口仅限于特定的栖息地(Moure and Melo,2023; Moure and Sakagami,1962)。虽然B. brevivillus和B. Morio完全是黑色的,但其他物种在人体的某些区域具有黄色绒毛(Santosjúnior等,2015)。尽管物种很少,但与温带气候的物种相比,热带大黄蜂的生物学研究不足。这种知识差距部分是由于很难定位其菌落或在实验室环境中保持长时间(GaróFalo,2005; Oliveira等,2015)。此外,这些热带大黄蜂比温带气候中的大黄蜂更具侵略性,对研究工作构成了挑战(Laroca,1972,1976;GaróFalo,2005; Oliveira et al。,2015)。值得注意的是,据报道,除了刺痛之外,布雷维维鲁斯(B. brevivillus)也可能从事一种防御行为,吐出一种不认识的物质,它阻止了入侵者,也阻碍了人们对这些大身蜜蜂的感情(Oliveira等人,2015年)。巢穴建在现有的地下空腔中或地面上,有或没有大黄蜂切割的垃圾或植被的保护层,这种变化发生在物种之间和内部(Laroca,1972,1976; Olesen,1989; 1989; Taylor and Cameron; Taylor and Cameron,2003; Oliveira,2003; Oliveira et e e; Oliveira等,2015,2015年)。热带地区的大黄蜂菌落通常遵循与温带物种相似的年生殖周期(Laroca,1976; Oliveira等,2015; Paula and Melo,2015)。然而,在有利的气候条件下,殖民地产生的新gynes可能不会进入抑郁,而是开始新的殖民地(GaróFalo,1979年)。此外,
季节性流感活动,2022年9月至2023年1月,从2022年9月到2023年1月,在所有地区都有流感活动,许多地区的活动都恢复到了典型的covid-19-19前大流行年的水平。在此期间,尽管报告国之间流通的病毒的比例有所不同,但流感(H1N1)PDM09,A(H3N2)和流感B病毒散发出来。在大多数国家/地区,流感病毒检测的人数超过了流感B.在北半球的温带地区,流感活动在10月开始增加,并在12月达到其最高水平。在2023年1月至5月中旬之间,大多数国家的流感活动都在下降。总体而言,流感A(H3N2)病毒已经占主导地位。北美的国家报告了A(H3N2)的占主导地位,较低的A(H1N1)PDM09和很少检测到的流感病毒。北欧国家报告说,流感(H1N1)PDM09和A(H3N2)病毒的流通,而在东南欧国家中,A(H3N2)代表了大多数检测。据报道,东欧国家,尤其是俄罗斯联邦的国家(H1N1)PDM09病毒的占主导地位。在北非,A(H3N2)病毒从9月至11月开始占主导地位,而A(H1N1)PDM09病毒代表了大多数检测的大多数检测。最近几周,北非国家和欧洲的所有地区都报告说,对流感B病毒呈阳性的样品的比例越来越多。西亚的国家的流通于A(H3N2),A(H1N1)PDM09和B病毒,而中亚国家则在A(H1N1)PDM09或B病毒中占主导地位。在东亚(中国)流感活动是由于一种(H3N2)病毒在12月底的流通。 自2023年2月以来,流感活动的增加是由于A(H1N1)PDM09和A(H3N2)病毒的共循环。 中美洲国家和加勒比海国家的热带和亚热带地区,流感A(H3N2)占主导地位。 在热带南美,流感活性由流感A(H3N2)主导,自2023年1月以来,已经检测到了流感量的越来越多的流感(H1N1)PDM09和B病毒。 在南亚和东南亚,流感活动是由流感类型或的共循环引起的在东亚(中国)流感活动是由于一种(H3N2)病毒在12月底的流通。自2023年2月以来,流感活动的增加是由于A(H1N1)PDM09和A(H3N2)病毒的共循环。中美洲国家和加勒比海国家的热带和亚热带地区,流感A(H3N2)占主导地位。在热带南美,流感活性由流感A(H3N2)主导,自2023年1月以来,已经检测到了流感量的越来越多的流感(H1N1)PDM09和B病毒。在南亚和东南亚,流感活动是由流感类型或
摘要麻黄是麻黄科家族的属,在温带地区,例如中亚和欧洲。在各种麻黄种中,莫黄(Ephedra Herb)源自Ephedra Sinica Stapf的空中部分,Ephedra Equisetina Bunge和Ephedra Intermedia Schrenk&C.A.Mey。 Ma Huang contains various ephedra alkaloids, including ( )-ephedrine, (+)-pseudoephedrine, ( )-norephedrine, (+)- norpseudoephedrine, ( )-methylephedrine, and (+)-methylpseudoephedrine, which are found naturally as single enantiomers, although they can be prepared作为种族。 尽管在韩国禁止在食品中使用ma huang,但可以进口含有马黄的产品,因此有必要开发合适的分析技术来检测食品中的ma huang。 在此,我们报告了用于检测包含马黄产品的麻黄碱的分析方法的开发。 通过固相提取样品纯化后,使用超表现液相色谱 - 三极杆质谱法(UPLC-MS/MS)进行定量分析。 此外,使用HPLC-DAD成功分离了对映异构体。 我们成功地分析了各种食物样本,在这些食物样本中,在促定性和定量上确定了麻黄碱,并分离了对映异构体。 预计这些方法可能有助于防止含有Ma Huang的非法产品的分布。 关键字ma huang,ephedra生物碱,uplc-ms/ms,hplc-dad,对映体分离Mey。Ma Huang contains various ephedra alkaloids, including ( )-ephedrine, (+)-pseudoephedrine, ( )-norephedrine, (+)- norpseudoephedrine, ( )-methylephedrine, and (+)-methylpseudoephedrine, which are found naturally as single enantiomers, although they can be prepared作为种族。尽管在韩国禁止在食品中使用ma huang,但可以进口含有马黄的产品,因此有必要开发合适的分析技术来检测食品中的ma huang。在此,我们报告了用于检测包含马黄产品的麻黄碱的分析方法的开发。通过固相提取样品纯化后,使用超表现液相色谱 - 三极杆质谱法(UPLC-MS/MS)进行定量分析。此外,使用HPLC-DAD成功分离了对映异构体。我们成功地分析了各种食物样本,在这些食物样本中,在促定性和定量上确定了麻黄碱,并分离了对映异构体。预计这些方法可能有助于防止含有Ma Huang的非法产品的分布。关键字ma huang,ephedra生物碱,uplc-ms/ms,hplc-dad,对映体分离
为了将这次会议与典型的国际研讨会区分开来,会议将被称为“湿润热带地区水文和水管理战略发展国际研讨会”。鼓励与会者在整个活动期间尽可能自由地进行对话。研讨会主题的重要性不仅得到了非正式国际指导委员会的认可,而且得到了联合国环境规划署(同意与联合国教科文组织一起发表演讲)和 22 个同意共同赞助和合作支持为期七天的活动的组织的认可。研讨会于 1989 年 7 月在澳大利亚汤斯维尔举行。在研讨会期间,与会者提出了强有力的证据,表明不仅湿润热带地区的现状需要认真考虑,而且如果不立即充分考虑,人类负面影响可能会大大增加。他们总体上认为,热带湿润地区和其他暖湿地区面临的许多与水有关的问题与温带气候地区的规划者、管理者和政府面临的问题类似——但尽管有相似之处,也存在许多不同之处。热带和温带地区都可能存在组织和机构之间缺乏协调、未能实现看似合理的目标、机构安排无效、经济不可行性、严重的环境和社会影响、不公平的结果以及类似的缺陷。然而,这些缺陷的影响似乎对热带湿润地区的影响更大。这种影响部分是由于热带和其他温暖潮湿地区的水文事件严重程度增加——降雨量增加、破坏性气旋天气反复发生、气温升高以及气候不平稳。在这些地区,通常有大量居民挤在狭小的区域,这加剧了他们面对恶劣天气的脆弱性,并造成了严重的水质下降问题。一个相关因素是该地区各国政府的经济发展相对阶段及其应对这些极端水文和水管理问题的能力。许多发展中国家仍然没有建立必要的机制和训练有素的人员来改善天气可能给他们带来的影响。大多数这些国家都存在责任分散的情况。显然,这些地区水资源管理的主要问题之一是未能或显然无法在总体发展规划的背景下考虑水资源开发。非政府组织的加入可能会使缓解热带和其他湿热地区的水资源问题的努力变得更加复杂。虽然这些国际机构的动机可能很好,但它们往往有自己的方法和技术,可能与东道国或其他专门机构的方法和技术不一致。虽然热带地区可能没有一个地区会遭受所有这些水资源管理困难,但存在一些共同点。没有足够的数据(包括物理数据和生物数据)来做出明智的判断。正在制定的规划范围很窄,专业人员和工作人员的培训不足。此外,行政安排和职责分散,进一步阻碍了管理的健全。人们还认为,过分强调项目开发和建设,而忽视了建设后的运营和维护,以及追求一些国家经济目标,可能会过度强调并严重损害现有的水资源。显然,水资源规划者、政策制定者和知识之间更好的互动
亚麻 ( Linum usitatissimum ) 也称为普通亚麻或亚麻籽,在温带地区作为油料和纤维作物种植,可能已被人类使用长达 30,000 年 ( Kvavadze et al., 2009 )。纤维亚麻是栽培亚麻的主要形态类型之一,也是驯化作物中最古老的形态,为人类提供了纤维来源 ( Hickey, 1988 )。据报道,对纤维亚麻 ( 纤维用途 ) 和亚麻籽亚麻 ( 油料用途 ) 的破坏性选择导致植物类型在形态、解剖学、生理学和农艺性能上存在很大差异 ( Diederichsen and Ulrich, 2009 )。纤维亚麻比油料用途亚麻相对较高、分枝较少、种子较少 ( Zhang et al., 2020 )。在过去十年中,纤维工业开发出高价值产品,应用于汽车、建筑工业、生物燃料工业和纸浆(Diederichsen 和 Ulrich,2009 年)。亚麻制成的纺织品在西方国家被称为亚麻布,传统上用于床单、内衣和桌布。亚麻仍然是一种小作物,主要原因是过去十年来其产量过低(Soto-Cerda 等人,2014 年)。准确的参考基因组已成为遗传学研究不可或缺的资源,尤其是对于功能基因图谱和标记辅助选择(MAS)。亚麻基因组的组装可以显著加速亚麻育种的进程。受益于亚麻参考基因组的发布,人们获得了不少与重要农艺性状相关的候选基因 ( Soto-Cerda et al., 2018; Xie et al., 2018a,b; You et al., 2018b; Guo et al., 2020 )。第一个亚麻基因组组装于 2012 年使用 Illumina 短双端和配对读段 (CDC Bethune v1) 发布 ( Wang et al., 2012 )。随后,You 等人使用光学、物理和遗传图谱 (CDC Bethune v2) 将这些碎片化的重叠群锚定到 15 个假分子中 ( You et al., 2018a )。最近还使用短双端读段和 Hi-C 测序发布了三个不同品种的基因组组装 ( Zhang et al., 2020 )。几个月前首次发表了使用错误长读长的亚麻组装体(Dmitriev et al., 2021)。然而,即使使用 Oxford Nanopore 长读技术,所有这些组装体的连续性都非常差。这些组装体最大的重叠群 N50 为 365 Kb。亚麻基因组最近经历了全基因组复制 (WGD) 事件,充满了重复元素(You et al., 2018a)。在使用短读长或错误长读长的组装过程中,同源序列或重复序列之间很容易发生崩溃。使用不同的软件和 Oxford Nanopore 长读长组装体,组装体大小差异很大,证明了这一点(Dmitriev et al., 2021)。