包括偏见,无偏的根平方误差(URMSE)和相关性,包括在图1和图2中。3G-I。 在所有情况下,重建的数据集都比重新分析数据集较低,相关性较高。 URMSE是通过从参考SWE和每组产品SWE值中删除平均值,然后用这些无偏数据集计算根平方误差的平均值。3G-I。在所有情况下,重建的数据集都比重新分析数据集较低,相关性较高。URMSE是通过从参考SWE和每组产品SWE值中删除平均值,然后用这些无偏数据集计算根平方误差的平均值。
摘要。当前的全球重新分析显示,北半球的雪质和雪覆盖范围中有明显的差异。在这里,通过驱动简单的雪模型,棕色的温度指数模型(B-TIM),并从三个reanalyses的温度和沉淀产生基准的雪数据集。在对现场降雪测量值进行评估时,降雪的B-TIM比在线(耦合的土地 - 大气层)重新分析降雪相当或更好。在降雪中的差异来源,在比较在线重新分析雪产品时很难分离,通过单独调整的温度和B-TIM的预先态度来部分阐明。雪质和雪空间模式的年际变异性在b-Tim雪产品中比在线重新分析的雪产品中更加自吻,而自吻的产品与在验证研究中评估的原位观察结果更相似。特定的与雪数据同化的时间不均匀性有关的伪影。B- Tim在此处以开源的,独立的Python软件包发布,为将来的在线和流雪数据集提供了一个简单的基准测试工具。
雪动力学在喜马拉雅山脉高山流域的水文中起着至关重要的作用。然而,基于现场观测来阐明该地区高海拔积雪的能量和质量平衡的研究却很少。在本研究中,我们使用尼泊尔喜马拉雅山脉两个高海拔地点的气象和雪观测来量化季节性积雪的质量和能量平衡。使用数据驱动的实验装置,我们旨在了解融雪的主要气象驱动因素,说明考虑积雪冷含量动态的重要性,并深入了解融雪水重新冻结在积雪能量和质量平衡中的作用。我们的研究结果显示,融化和重新冻结对反照率的敏感性、融水重新冻结的重要性以及用于克服积雪冷含量的正净能量之间存在复杂的关系。两个地点的净能量主要由净短波辐射驱动,因此对雪反照率测量极为敏感。我们得出结论,根据观察到的积雪温度,21% 的净正能量用于克服夜间积累的冷量。我们还表明,在这两个地点,至少有 32-34% 的融雪水会再次冻结。即使考虑到冷量和冻结,仍然有超过融化积雪所需的过剩能量。我们假设,这种过剩能量可能是由于短波辐射测量的不确定性、由于基底冰层而低估的冻结、由于新雪和地面热通量而导致的冷量增加所致。我们的研究表明,为了准确模拟喜马拉雅流域季节性积雪的质量平衡,简单的温度指数模型是不够的,需要考虑冻结和冷量。
参考Hock,R。2003。“温度指数在山区的建模。”水文,山水和水资源杂志,282(1):104–15。Kraaijenbrink,P.D.A.,M.F.P。 Bierkens,A。F。Lutz和W.W. Immerzeel。 2017。 “全球温度升高为1.5摄氏度对亚洲冰川的影响。” Nature 549(7671):257–60。 Lievens,H.,M。Demuzere,H.P。 Marshall,R.H。Reichle等。 2019。 “从太空观察到的北半球山脉的雪深度变化。”自然通讯10(1):1-12。 出版为:Kraaijenbrink,P。D. A.,Stigter,E。E.,Yao,T。和Immerzeel,W。W.(2021)。 气候变化决定亚洲的雪融合水供应。 nat。 攀登。 chang。 11,591–597。 doi:10.1038/s41558-021-01074-x。Kraaijenbrink,P.D.A.,M.F.P。Bierkens,A。F。Lutz和W.W. Immerzeel。 2017。 “全球温度升高为1.5摄氏度对亚洲冰川的影响。” Nature 549(7671):257–60。 Lievens,H.,M。Demuzere,H.P。 Marshall,R.H。Reichle等。 2019。 “从太空观察到的北半球山脉的雪深度变化。”自然通讯10(1):1-12。 出版为:Kraaijenbrink,P。D. A.,Stigter,E。E.,Yao,T。和Immerzeel,W。W.(2021)。 气候变化决定亚洲的雪融合水供应。 nat。 攀登。 chang。 11,591–597。 doi:10.1038/s41558-021-01074-x。Bierkens,A。F。Lutz和W.W. Immerzeel。2017。“全球温度升高为1.5摄氏度对亚洲冰川的影响。” Nature 549(7671):257–60。Lievens,H.,M。Demuzere,H.P。 Marshall,R.H。Reichle等。 2019。 “从太空观察到的北半球山脉的雪深度变化。”自然通讯10(1):1-12。 出版为:Kraaijenbrink,P。D. A.,Stigter,E。E.,Yao,T。和Immerzeel,W。W.(2021)。 气候变化决定亚洲的雪融合水供应。 nat。 攀登。 chang。 11,591–597。 doi:10.1038/s41558-021-01074-x。Lievens,H.,M。Demuzere,H.P。Marshall,R.H。Reichle等。 2019。 “从太空观察到的北半球山脉的雪深度变化。”自然通讯10(1):1-12。 出版为:Kraaijenbrink,P。D. A.,Stigter,E。E.,Yao,T。和Immerzeel,W。W.(2021)。 气候变化决定亚洲的雪融合水供应。 nat。 攀登。 chang。 11,591–597。 doi:10.1038/s41558-021-01074-x。Marshall,R.H。Reichle等。2019。“从太空观察到的北半球山脉的雪深度变化。”自然通讯10(1):1-12。出版为:Kraaijenbrink,P。D. A.,Stigter,E。E.,Yao,T。和Immerzeel,W。W.(2021)。气候变化决定亚洲的雪融合水供应。nat。攀登。chang。11,591–597。 doi:10.1038/s41558-021-01074-x。11,591–597。doi:10.1038/s41558-021-01074-x。
附录 A. 参考文献,第 56 页 B. 湿球黑球温度指数,第 60 页 C. 指挥官、高级士官和教员的预防热伤亡风险管理指南,第 61 页 词汇表,第 65 页 表格列表 表 2-1. 通用热适应策略,第 12 页 表 3-1. 25 名志愿者在高温下进行 3 小时户外运动时测得的直肠温度与其他体温之间的平均绝对差 (MAD),第 16 页 表 3-2. 在温暖和炎热环境中训练的液体补充和工作休息指南,第 18 页 表 3-3. 在温暖和炎热环境中连续工作时间和液体补充的建议,第 19 页 表 3-4. 轻型飞行服的战斗机热应力指数 (FITS)(晴天至轻微阴天),第 25 页使用标准补液政策在温暖和炎热环境中训练的替代液体补充指南,第 29 页表 3-6。补水优化策略,第 30 页表 4-1。劳力性中暑的个体和环境风险因素,第 34 页表 4-2。与劳力性中暑易感性有关的药物,第 35 页表 4-3。经典中暑和劳力性中暑的比较,第 39 页表 4-4。劳力性中暑的常用测量分析物及其恢复时间过程,第 40 页表 4-5。导致劳力性横纹肌溶解症的潜在因素,第 41 页表 5-1。疑似中暑伤员的警告信号、症状和紧急措施,第 43 页表 5-2。建议使用冰袋治疗疑似劳力性中暑,第 47 页表 5-3。军人昏倒后的不同表现类型,第 53 页表 5-4。 ICD-10 劳力性中暑症状编码,第 55 页 图表列表 图 2-1. 美国陆军人员 5 年期间(2015-2019 年)热衰竭和中暑的总体频率和每周分布,第 5 页 图 2-2. 军人在热环境中从事体力劳动时的能量(热量)传递,第 6 页 图 2-3. 测量位置对 WBGT 指数的影响,佐治亚州本宁堡,2005 年 7 月,第 8 页 图 2-4. 环境热应激对相当于 2 英里跑步或 3 英里行军的自定步调耐力任务的独立和综合影响,第 10 页 图 2-5. 权衡分析表现列线图,第 10 页 图 3-1. 热应激风险评估流程,第 14 页 图 3-2. CHS 和 UCHS 期间以三种代谢率持续体力劳动时身体核心温度反应说明,第 15 页军事和运动医学 WBGT 指数类别比较,第 20 页图 3-4。佐治亚州本宁堡 2017 年 7 月 31 日历史气象数据,第 21 页图 3-5。12 英里行军期间身体储热率比较,负重 55 磅,180 分钟完成(标准),速度慢 10%,重量轻 50%,或将衣服换到 PFU,第 21 页