量子纠错领域的一个有趣问题是找到一个物理系统,该系统承载着“被动保护的量子存储器”,即与自然想要纠正错误的环境耦合的编码量子位。迄今为止,仅在四个或更高的空间维度中才知道量子存储器能够抵抗有限温度效应。在这里,我们采用不同的方法,通过依赖驱动耗散环境来实现稳定的量子存储器。我们提出了一个新模型,即光子-伊辛模型,它似乎可以被动地纠正二维中的位翻转和相位翻转错误:由光子“猫量子位”组成的方格,这些量子位通过耗散项耦合,倾向于局部修复错误。受两个不同的 Z 2 对称性破坏相的启发,我们的方案依靠类伊辛耗散器来防止位翻转,并依靠驱动耗散光子环境来防止相位翻转。我们还讨论了实现光子-伊辛模型的可能方法。
本文通过将模拟设置校准到垂直无结多栅极晶体管实验数据,介绍了先进的 β -Ga 2 O 3 TCAD 模拟参数和方法。通过仔细校准,确定了几个重要的 β -Ga 2 O 3 器件物理特性。研究了补偿掺杂和掺杂剂不完全电离的影响。使用了可以捕捉温度效应的电子飞利浦统一载流子迁移率 (PhuMob) 模型。我们还表明,界面陷阱可能对非理想亚阈值斜率 (SS) 不起作用,短沟道效应是 SS 退化的主要原因。我们还讨论了无结 Ga 2 O 3 晶体管的击穿机制,并表明其受到关断状态下沟道穿通的限制。校准后的模型与实验的电容-电压 (CV) 和电流-电压 (IV) 很好地匹配,可用于预测新型 β -Ga 2 O 3 器件的电性能。 © 2020 作者。由 IOP Publishing Limited 代表电化学学会出版。这是一篇开放获取的文章,根据知识共享署名 4.0 许可条款发布(CC BY,http://creativecommons.org/licenses/ by/4.0/),允许在任何媒体中不受限制地重复使用作品,前提是对原始作品进行适当引用。[DOI:10.1149/ 2162-8777/ab7673]
摘要:可再生能源生产氢的电解已成为支持衰败经济的策略。但是,与传统的发射碳发射方法相比,它通常没有成本效益。由于预测的低和零边缘成本可再生能源的中间体,电解与电力定价连接的能力是一种新颖的成本降低方式。此外,可更可再生能源,尤其是光电塔克斯,对部署网格的值有偏转的影响。这项研究研究了使用光伏细胞喂养质子交换膜水电解核的太阳能电解构造,以进行氢。使用1分钟精度的实验气象数据,该系统已在伊拉克首都巴格达进行了评估。位于所选位点的年度最佳倾斜角度,太阳阵列的额定值为12 kWp。温度效应。在产生氢的角度,具有2至14 kW的能力,以确定可再生能源的效率和效率。MATLAB用于模拟过程,考虑到2021 - 2035年的项目寿命。结果表明,与市场配置的系统相关的系统存在各种潜在的具有成本竞争力的选择,这些选择紧密近似于批发可再生氢。每年操作4313小时,计划的光伏阵列产生了18,892 kWh
摘要:可再生能源生产氢的电解已成为支持衰败经济的策略。但是,与传统的发射碳发射方法相比,它通常没有成本效益。由于预测的低和零边缘成本可再生能源的中间体,电解与电力定价连接的能力是一种新颖的成本降低方式。此外,可更可再生能源,尤其是光电塔克斯,对部署网格的值有偏转的影响。这项研究研究了使用光伏细胞喂养质子交换膜水电解核的太阳能电解构造,以进行氢。使用1分钟精度的实验气象数据,该系统已在伊拉克首都巴格达进行了评估。位于所选位点的年度最佳倾斜角度,太阳阵列的额定值为12 kWp。温度效应。在氢产生方面,几个具有2至14 kW的电解液,以确定可再生能源的效率和效率。MATLAB用于模拟过程,考虑到2021 - 2035年的项目寿命。结果表明,与市场配置的系统相关的系统存在各种潜在的具有成本竞争力的选择,这些选择紧密近似于批发可再生氢。每年操作4313小时,计划的光伏阵列产生了18,892 kWh
摘要:向地质储存地点注入气体,将现有的岩孔空间中的水取代,触发了横向继发物。这种现象涉及从水饱和度较高的地区迁移以补充流离失所的水。这种吸收发生的横向距离对于理解氢和二氧化碳地质储存期间的注射/戒断流量和捕获加气饱和至关重要。本研究研究了考虑压力和温度效应,研究了方解石(代表碳酸盐)和玄武岩的氢和二氧化碳系统中的二级吸收动力学。利用经过改进的卢卡斯 - 瓦什本方程,结果表明,所有气体和岩石系统的横向距离和二次吸收率随压力而下降。此外,碳酸盐和玄武岩的氢系统水的横向距离和二次吸收率,以及碳酸盐的二氧化碳系统,随温度的增加。然而,在玄武岩下的二氧化碳系统的横向距离和二次吸收率随温度而降低。这项研究提供了至关重要的基本数据,对地下氢存储和二氧化碳地质储存具有重要意义。这些发现有助于理解碳酸盐和玄武岩岩石中的侧向吸收,从而提供了有价值的见解,以增强孔隙空间内的气体保留率,从而影响残留的捕获。
抽象线性缩放关系(LSR)和Brønsted - Evans - Polanyi(BEP)或过渡状态缩放(TSS)关系有助于电子能量的预测。然而,温度效应和指数前通常被视为跨金属表面和同源系列的常数。振动缩放关系(VSR)提供了确定此类参数的方法。过渡状态振动缩放关系(TSVSR)在局部最小值和AH X(A = C,N,O)表面扩散的局部最小值状态与BEP关系相关,并扩展到热化学性质缩放。使用密度功能理论(DFT),我们将TSVSR扩展到过渡金属表面上的AH X脱氢反应,将局部最小值的振动模式与过渡状态相关。我们首先通过使用Slater-Koster结构因子并通过晶体轨道重叠种群(COOP)分析(COOP)分析(COOP)分析和能量重叠积分积分来预测TSS关系的斜率。此外,我们发现了通用的热化学性质缩放,从而使熵和温度校正能够估算到同源系列中的焓。我们证明了固有电子屏障低的反应中的显着振动校正,并且在金属和AH X吸附物的简单脱氢反应的固定前差异很大。
摘要—为了满足能源需求并降低二氧化碳排放量和生产成本,埃及扩大了可再生能源发电厂的发电能力。然而,如果不进行评估,这种扩张可能会导致能源生产失败,因为这种非常规技术的运行不可靠且不可行。在本文中,使用优化模型评估了可再生能源的计划扩张(到 2030 年)。该模型分为两个阶段,其中阶段 A 估计光伏、CSP 和风电厂的成本和容量,而阶段 B 根据所需需求(即光伏、CSP 和风电的贡献)优化电厂。可用数据(即强度、存储和温度效应)用作阶段 A 的输入,而计算出的成本和容量用作阶段 B 的输入。结果以空间和时间分布的形式呈现。结果成功地确定了有前景的可再生能源电厂(即类型和位置),以及不同可再生能源电厂的混合安装。具体来说,CSP 电厂贡献了约 20% 的电力需求,尤其是在上埃及,因为它们的容量较大,但成本较高。同时,光伏电厂的贡献率约为 40%,不适合在上埃及安装。此外,建议在红海地区附近安装风力发电厂,其电力贡献率约为 40%。本研究旨在加深我们对埃及可再生能源扩张计划的理解;旨在评估其潜力。关键词 — 可再生能源扩张;光伏;CSP;风能。1. 引言
摘要:上下文:牙髓治疗的成功主要取决于有效的灌溉方法溶解牙髓组织,清除碎屑并清洁复杂的根管系统。次氯酸钠(Naoci)是由于其组织 - 溶解和抗菌特性而广泛使用的牙髓灌溉。目的:在次氯酸钠的不同温度下,人浆组织溶解的定量评估。材料和方法:从新鲜提取的前磨牙收集了二十四个人类纸浆组织的样品。样品分为两组:I组为正常生理盐水和II组为5.25%NAOCI。根据温度(37°C和60°C)进一步将每个组分为两个亚组,并根据组织溶解的时间间隔(1分钟,5分钟和60分钟)。结果:结果表明正常盐水未显示纸浆组织的任何溶解。相比之下,与正常盐水相比,在温度和所有时间间隔中,NAOCL的组织溶解能力明显更高。在60°C下接触5分钟至60分钟时,会看到较少的纸浆溶解。结论:根据当前研究的发现,可以得出结论,当与果肉组织接触至少5分钟,最多60分钟时,5.25%NAOCL在60°C温度下表现出最大的牙髓组织溶解。关键字:牙髓灌溉,次氯酸钠,纸浆组织溶解,温度效应,时间间隔1。引言在牙髓疗法领域获得成功的结果取决于生物力学制备准确性的三合会,化学消毒的效力以及所有根尖的有效封闭。根管系统的具有挑战性且复杂的内部解剖结构使得难以对根管系统进行彻底消毒。因此,灌溉对于消除牙本质碎屑,溶解剩余的牙髓组织和
对温度波动对全球国内生产总值 (GDP) 影响的计量经济学分析表明,较高的温度对温暖国家有害,对较冷国家有益,并且存在全球“最佳”温度 1 – 3 。然而,总体温度-GDP 关系是跨空间和经济部门的平均值,掩盖了异质性,歪曲了温度变化的成本或收益,并为缓解和适应政策提供了误导性指导。我们以欧洲为重点,使用行政区级的增加值 (GVA) 和 GDP 增长率数据来估计温度对国家、地区和行业层面经济增长的影响。与之前的全球研究不同,在欧洲,我们发现,在相对寒冷地区(年平均气温 0 至 14°C),高于平均水平的年份对 GVA 和 GDP 产生负面影响,而在较温暖地区(高于平均水平 14°C)高于平均水平的年份产生正面影响,而在极端地区(< 0°C 和 > 20°C),情况则相反。在整个欧洲,这种 U 型温度-GDP 增长关系意味着经济增长将发生 -0.14(95% CI:± 0.16)个百分点的变化,而不是 1 中的 +0.16(± 0.14)的收益。使用 RCP4.5(中位数 CMIP6),到 2100 年,年平均增长率将变化 -0.07(± 0.18)至 -1.23(± 0.38)个百分点,具体取决于实证规范。按部门和地区分类,边际温度效应高度不均匀,即使在国家内部也是如此。结果颠覆了正温度冲击有利于较冷地区的说法,指出了由专业化引起的区域脆弱性,并表明局部温度最适值,而不是全球温度最适值。JEL 分类:D31、D61、H43。关键词:经济增长、温度冲击、气候变化、空间异质性、欧洲。
第 1 章 1.0 概述。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-1 1.1 文件的目的和使用。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-1 1.1.1 简介。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-1 1.1.2 手册的范围。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-1 1.2 命名法 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-3 1.2.1 符号和定义 . . .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-3 1.2.2 国际单位制(SI) .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.........1-3 1.3 常用公式 .............。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-5 1.3.1 概述 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。..1-5 1.3.2 简单单位应力 ...................。。。。。。。。。。。。。。。。。。。。。。。。.....1-5 1.3.3 组合应力(见第 1.5.3.5 节) ........。。。。。。。。。。。。。。。。。。。。。。。。。。1-5 1.3.4 偏转(轴向)。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-5 1.3.5 偏转(弯曲) .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-5 1.3.6 挠度(扭转) .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-6 1.3.7 双轴弹性变形 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-6 1.3.8 基本列公式 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-6 1.3.9 非弹性应力-应变响应。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-7 1.4 基本原理.。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-9 1.4.1 一般 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-9 1.4.2 压力。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-10 1.4.3 应变.。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.........1-10 1.4.4 拉伸性能 .............。。。。。。。。。。。。。。。。。。。。。。。。...............1-11 1.4.5 压缩特性 ..........。。。。。。。。。。。。。。。。。。。。。。。。................1-17 1.4.6 剪切特性 .........。。。。。。。。。。。。。。。。。。。。。。。。......................1-18 1.4.7 轴承特性 ..。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-19 1.4.8 温度效应 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-21 1.4.9 疲劳性能.。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-22 1.4.10 冶金不稳定性。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。....1-25 1.4.11 双轴特性 .................。。。。。。。。。。。。。。。。。。。。。。。。.........1-25 1.4.12 断裂韧性 ............。。。。。。。。。。。。。。。。。。。。。。。。...............1-27 1.4.13 疲劳裂纹扩展 .........。。。。。。。。。。。。。。。。。。。。。。。。.................1-36 1.4.14 用户材料热处理值的使用 .......。。。。。。。。。。。。。。。。。。。。。。1-39 1.5 故障类型。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-41 1.5.1 概述 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-41 1.5.2 材料故障。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-41 1.5.3 不稳定故障。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-42 1.6 列。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-43 1.6.1 概述 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-43 1.6.2 主要失稳故障。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-43 1.6.3 局部不稳定故障。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-43 1.6.4 柱测试结果的校正.。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-44 1.7 薄壁截面和加筋薄壁截面。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-53 1.8 基于允许值的非线性静态分析流动应力。。。。。。。。。。。。。。。。。。。。。。。。1-55 1.8.1 简介 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-55 1.8.2 程序。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-55 1.8.3 报告要求.。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-57