可靠性工程已成为功率电力(PE)的一个相对较新的分支,该分支支持快速进步,并具有明显提高的可靠性评级,以实现高级电力电子转换器系统(PEC)。pecs在越来越严重的温度纤维中运行,即在极端温度水平之间的快速循环。因此,作为PEC的基本组成部分,功率半导体模块的可靠性要求显着增加。电源模块制造商一直在研究新的电源模块设计和包装技术,以增加限制和延长future中功率模块的寿命,随后也可以在可靠性方面进行高性能[1]。将来,可靠性方面必须包括在新型的多域优化工具中,以进一步改善PEC的设计。朝着该目标的第一步是允许将系统组件的寿命模型集成到设计过程中。功率模块的可靠性代表了一个高度的跨学科主题,因为它需要在不同领域具有更深入的知识:1)功率模块的机械设计和热能功能,2)失败的物理学,由Ma terial Science解释,以及3)Power Electronics作为其应用程序文件。已经研究了终生估算功率模块的预测技术和复杂模型,并受到了越来越多的关注。这些模型中的大多数是用于表征功率模块功率循环功能的经验寿命模型,例如[2,3]中介绍的寿命模型。现有Power模块的制造商拥有详细的产品数据,是开发和验证功率模块终生模型所需的专业知识和资源,已经进行了重大调查。实际上,它们仅基于经验和统计分析,对长期加速循环测试中获得的大型数据库。
月球表面或向火星任务的基础是人类太空的潜在目的地。这些方案构成了一些新的挑战,因为任务的环境和操作条件将与国际空间站(ISS)的环境和操作条件有很大差异。一个关键参数将是增加任务持续时间和与地球更远的距离,需要与地球资源尽可能独立的生命支持系统(LSS)。ISS的当前LSS物理化学技术可以回收90%的水,并从宇航员的呼出CO 2中恢复42%的O 2,但它们无法生产食物,目前只能使用生物学来实现这一食物。未来的LSS很可能包括当前正在使用的其中一些技术,但还需要包括生物组件。潜在的生物候选者是微藻,与较高的植物相比,其收获指数,更高的生物量生产率和更少的水。在过去的几十年中,已经研究了几种藻类物种的空间应用,这是一个有希望的和广泛研究的物种。c. ulgaris是球形单细胞生物,平均直径为6 µm。它可以在广泛的pH和温度水平以及CO 2浓度中生长,并且表现出高度抗跨污染和机械剪切应力的耐药性,使其成为长期LSS的理想生物。为了连续和有效地产生LSS所需的氧气和食物,微藻需要在良好的控制和稳定的环境中生长。因此,除了生物学方面,培养系统的设计,即光生反应器(PBR),也至关重要。Even if research both on C. vulgaris and in general about PBRs has been carried out for decades, several challenges both in the biological and technological aspects need to be solved, before a PBR can be used as part of the LSS in a Moon base.其中包括:对藻类的辐射影响,部分重力下的操作,选择用于耕种和食物加工所需的硬件,系统自动化以及长期性能和稳定性。
摘要:泵送热能存储(PTE)的研究引起了科学界的极大关注。它更好地适合特定应用程序,以及对创新储能技术开发的日益增长的需求,这是引起这种兴趣的主要原因。文献中使用了Carnot Battery的名称(CB)来参考PTES系统。目前的论文旨在开发包括高温两阶段热泵(2SHP),中间热储存(潜热)和有机兰金循环(ORC)的CB的能量分析。从广义的角度来看,考虑到HP的两种热量输入:地面中的冷储液(在全年的恒温为12℃)和80℃(热整合PTES-TI-PTES)中进行热量存储。第一部分定义了HP和ORC的简单模型,其中仅考虑周期的效率。在此基础上,识别存储温度和流体的种类。然后,考虑到更现实的模型,热交换器的恒定大小以及扩展器和压缩机的外部设计操作,计算了预期的功率(往返)效率。该模型是使用工程方程求解器(EES)软件(学术专业V10.998-3D)模拟的,用于几种工作流体和不同的温度水平,用于中级CB热量存储。此外,当HP工作流体(在同一情况下)更改为R1336MZZ(Z)时,往返全负载和零件载荷效率分别降至72.4%和46.2%。结果表明,基于TI-PTES操作模式(甲苯作为HP工作流体)的场景达到了全负载时达到80.2%的最高往返效率,而在零件负载(25%的负载的25%)中,往返额效率为50.6%。这项研究的发现提供了基于混合构成线性编程(MILP)算法的热性经济优化模型,可以在热经济优化模型中进行线性性和使用。
锂离子电池(LIB)及其性能在各种系统和电子设备中起着关键作用,尤其是在接受和建立电动汽车方面。因此,对他们的衰老以及能力下降和终生减少的研究是在增加运营寿命和管理使用情况下针对电池研究目标的核心。电池老化在日历和循环老化中有区别,后者是由电荷隔离循环引起的,即由于使用情况,以及日历衰老,包括时间引起的所有其他老化过程。在相关文献中的许多论文中都研究了两种衰老,旨在识别衰老因素并建模其效果。共同的基础是日历老化主要取决于温度和充电状态(SOC),而周期老化(除了先前的因素外,还取决于当前的速率和电荷/放电/放电量电压(请参阅Barcellona和Piegari 1 and Piegari 1以及其中的参考文献)。SOC是一个指示电池相对于名义级别的电池剩余能力的索引。它在0%至100%之间变化,后者对应于充满电的电池。循环或日历老化产生的降解路径差异很大。在后一种情况下,通常观察到光滑的曲线。在这项工作中,我们将重点放在日历老化建模和目标上,以建模能力降解,这是通过纵向设置降级,该纵向设置适用于源自几个实验条件的数据,同时捕获和描述不同的 - 条件级别特定的 - 特定于效果。3)。我们激励的案例研究源于Schmalstieg等人的一项广泛的研究,其中20多种相同类型的电池电池已被测试,并考虑了它们的日历和循环老化。特别是日历老化,它们在三个不同温度和几个SOC水平下老化细胞,并在一段时间内测量了其能力,直至某个分解点,这是由所谓的寿命终止(EOL)标准指定的,通常将其设定为初始容量的80%(参见Baumhöfer等。在每个条件(SOC温度水平组合)下,他们测试了三个细胞。
[14]和捕获的离子[5],不超过几百个适度的稳健量子[4]。尽管现有的路线图指向在不久的将来托管数千吨的加工者[9]并改善了物理量子位的鲁棒性[1,32],但仍有相当大的差距,对于解决实际现实世界中的实际现实问题所需的数百万量子器[41]。密集包装的整体量子处理器托有大量Qubits构成了严重的技术问题,这是由于交叉对话,量子状态干扰的影响以及用于控制量子的系统的复杂性的增加[45] [45],从而恶化了计算结果。此外,主机计算机和量子处理器之间的互连(通常具有极为不同的形式,并以极大不同的温度水平)迅速成为此类架构中的瓶颈[29,40]。因此,扩大当前的量子计算机以托管此类整体体系结构中的Qubits更高数量仍然是一个巨大的挑战,找到减轻这些约束的方法对于开发大规模,可行的量子计算机至关重要。整体量子计算机架构的建议替代方案是模块化(或多核)量子处理器[16,47,51]。 这种方法基于规模的方法,即通过经典和量子互联链路[11]互连几个中等尺寸的量子处理单元(QPU)或量子核心[11],目的是减轻与单个芯片上的质量数量相关的挑战。整体量子计算机架构的建议替代方案是模块化(或多核)量子处理器[16,47,51]。这种方法基于规模的方法,即通过经典和量子互联链路[11]互连几个中等尺寸的量子处理单元(QPU)或量子核心[11],目的是减轻与单个芯片上的质量数量相关的挑战。在这种情况下,随着量子核的数量增加,这种量子体系结构中的互连织物作为关键子系统出现。由于互连似乎是实现量子计算机缩放的关键要素之一,因此本文旨在提供对量子计算领域的上下文分析,以激发芯片上的网络(NOC)社区,以应对其独特的通信挑战。朝着这个目标,我们的贡献包括:(i)关于多核量子计算机的简短教程,描述了第2节中的简化堆栈,从软件到硬件的简化堆栈; (ii)量子计算机中主要通信流以及可以实现它们的不同互连技术的概述,如第3节所述; (iii)对模块化量子计算机中通信上下文的分析,包括
扩展摘要 欧盟的目标是到 2050 年实现温室气体 (GHG) 净零经济,到 2030 年比 1990 年的水平减少 55%。目前,供暖和制冷占德国最终能源需求的 50% 以上,主要由化石燃料衍生的能源供应(BMWK,2022 年)。供热系统脱碳面临的一个挑战是供热和可持续能源供热之间的季节性不匹配。只有通过灵活管理供热网络和各种不同的存储技术,才能充分利用不稳定的可再生热能的潜力。矿井热能存储 (MTES) 系统可以提供这样一种可复制且智能的解决方案,以抵消供暖和制冷需求的季节性下降和峰值。到目前为止,在 HEATSTORE 项目框架内仅建立了一个高温 MTES 试验工厂(德国波鸿),其中成功测试了在废弃煤矿中储存热能的可能性。鲁尔大学 (RUB) 的当地区域供热网目前由两个总容量为 9 MW 的热电联产模块和三个总热输出为 105 MW 的燃气峰值锅炉运行。它们位于 RUB 的技术中心内。废弃的 Mansfeld 煤矿位于地下约 120 m 深处,位于发电厂的正下方,计划用作储热池。PUSH-IT 项目中的波鸿 MTES 演示站点将与 RUB 一起在其技术中心内建立。该项目将在夏季从峰值负荷为 700 kW 的数据中心补充余热。为了在冬季利用这些余热,废弃的 Mansfeld 煤矿将通过四口井(计划于 2024 年第三季度)开发为 MTES,进入煤矿的第一个石巷。根据预见的泵测试结果,这些井将用作生产/注入井或监测井。图 1 展示了废弃的 Mansfeld 煤矿的矿井工作面(第一层),深度约为 120 mbgl,位于“技术中心”发电厂的正下方。根据 Leonhardt(1983)假设的地热梯度,第一层的天然岩体温度应约为 11 °C。FUW 电网的发电厂位于先前开发的 HEATSTORE MTES 试点东北仅 300 米处,因此现有结果(如地质、水文地质、区域数值模型)可用于 FUW 区域供热网络的下一阶段转型。必须更加仔细地考虑前曼斯菲尔德煤矿内的 MTES 中可能的季节性余热输入和输出,同时考虑到 FUW 电网区域供热网络的框架参数。季节性热储存和区域供热网络中不同的温度水平可能会带来问题。虽然 MTES 中最高储存温度似乎可以达到 90°C,但区域供热网络采用天气补偿流动温度运行。为了能够提供所需的热量输出,流动温度从室外温度低于 8°C 时的 80°C 线性上升到室外温度为 -10°C 时的 120°C。