本研究讨论了光滑表面上开环边界层风洞中准大气边界层的发展。风洞的工作段高 1 米,长 9 米,分为三个部分,每个部分长 3 米。使用恒温风速计 (CTA) 热线测量测试段内的流速。风洞的风速设定为 10 m/s。测量在三个相应部分的三个流向位置进行。在三个流向位置获得的流向速度、标准偏差和偏度曲线表明,边界层高度从风洞的上游位置向下游位置发展。此外,在测试段第一部分获得的流入条件的流动均匀性和湍流强度分别为 7.1% 和 6.4%。
摘要。多层光转换(MPLC)提供了自适应光学器件的替代方法,用于将湍流腐败的自由空间光束耦合到单模光纤或波导中。最近发布的测试结果表明,这种转换设备比自适应光学系统具有可比性或更好的性能。为了更好地了解设备特性,进行了模拟,以量化不同湍流强度和Hermite数量的功率损失 - 转换过程中使用的高斯模式。特定的病例研究是由美国陆军研究实验室开发的原型自由空间激光通信系统。拟议的仿真和统计结果报告了。还讨论了MPLC后梁功率组合器的分析。©作者。由SPIE在创意共享归因4.0国际许可下出版。全部或部分分发或复制此工作需要完全归因于原始出版物,包括其DOI。[doi:10.1117/1.oe.61.11.116104]
摘要:本文介绍了一种在并非所有状态都可用的情况下针对飞机跟踪问题的控制器设计流程。在研究中,采用了非线性运输飞机仿真模型,并通过最大似然原理和扩展卡尔曼滤波器对其进行了识别。在并非所有状态都可测量的情况下,所获得的数学模型用于设计具有最佳加权矩阵的线性二次调节器 (LQR)。对具有 LQR 控制器跟踪能力的非线性飞机仿真模型进行了多次实验,实验中噪声水平各不相同。结果表明,所设计的控制器具有鲁棒性,可实现精确的轨迹跟踪。研究发现,在理想的大气条件下,即使对于未测量的变量,跟踪误差也很小。在有风的情况下,跟踪误差与风速成正比,对于小扰动和中等扰动而言是可以接受的。当实验中存在湍流时,会发生与湍流强度成正比的状态变量振荡,对于小扰动和中等扰动而言是可以接受的。
摘要:本文介绍了一种当并非所有状态都可用时,针对飞机跟踪问题的控制器设计流程。在研究中,采用了非线性运输飞机仿真模型,并通过最大似然原理和扩展卡尔曼滤波器对其进行了识别。在并非所有状态都可测量的情况下,所获得的数学模型用于设计具有最佳加权矩阵的线性二次调节器 (LQR)。对具有 LQR 控制器跟踪能力的非线性飞机仿真模型进行了多次实验,实验中噪声水平各不相同。结果表明,所设计的控制器具有鲁棒性,可实现精确的轨迹跟踪。研究发现,在理想的大气条件下,即使对于未测量的变量,跟踪误差也很小。在有风的情况下,跟踪误差与风速成正比,对于小扰动和中等扰动而言是可以接受的。当实验中存在湍流时,会发生与湍流强度成正比的状态变量振荡,对于小扰动和中等扰动而言是可以接受的。
摘要:本文介绍了一种在并非所有状态都可用的情况下针对飞机跟踪问题的控制器设计流程。在研究中,采用了非线性运输飞机仿真模型,并通过最大似然原理和扩展卡尔曼滤波器对其进行了识别。在并非所有状态都可测量的情况下,所获得的数学模型用于设计具有最佳加权矩阵的线性二次调节器 (LQR)。对具有 LQR 控制器跟踪能力的非线性飞机仿真模型进行了多次实验,实验中噪声水平各不相同。结果表明,所设计的控制器具有鲁棒性,可实现精确的轨迹跟踪。研究发现,在理想的大气条件下,即使对于未测量的变量,跟踪误差也很小。在有风的情况下,跟踪误差与风速成正比,对于小扰动和中等扰动而言是可以接受的。当实验中存在湍流时,会发生与湍流强度成正比的状态变量振荡,对于小扰动和中等扰动而言是可以接受的。
摘要:本文介绍了一种在并非所有状态都可用的情况下针对飞机跟踪问题的控制器设计流程。在研究中,采用了非线性运输飞机仿真模型,并通过最大似然原理和扩展卡尔曼滤波器对其进行了识别。在并非所有状态都可测量的情况下,所获得的数学模型用于设计具有最佳加权矩阵的线性二次调节器 (LQR)。对具有 LQR 控制器跟踪能力的非线性飞机仿真模型进行了多次实验,实验中噪声水平各不相同。结果表明,所设计的控制器具有鲁棒性,可实现精确的轨迹跟踪。研究发现,在理想的大气条件下,即使对于未测量的变量,跟踪误差也很小。在有风的情况下,跟踪误差与风速成正比,对于小扰动和中等扰动而言是可以接受的。当实验中存在湍流时,会发生与湍流强度成正比的状态变量振荡,对于小扰动和中等扰动而言是可以接受的。
摘要:本文介绍了一种在并非所有状态都可用的情况下针对飞机跟踪问题的控制器设计流程。在研究中,采用了非线性运输飞机仿真模型,并通过最大似然原理和扩展卡尔曼滤波器对其进行了识别。在并非所有状态都可测量的情况下,所获得的数学模型用于设计具有最佳加权矩阵的线性二次调节器 (LQR)。对具有 LQR 控制器跟踪能力的非线性飞机仿真模型进行了多次实验,实验中噪声水平各不相同。结果表明,所设计的控制器具有鲁棒性,可实现精确的轨迹跟踪。研究发现,在理想的大气条件下,即使对于未测量的变量,跟踪误差也很小。在有风的情况下,跟踪误差与风速成正比,对于小扰动和中等扰动而言是可以接受的。当实验中存在湍流时,会发生与湍流强度成正比的状态变量振荡,对于小扰动和中等扰动而言是可以接受的。
案例 ID 框大小 R λ ˙ E [cu] k max η K η K [cu] IL 11 /η KL /L 11 N p [#] DNS 1.1 512 74 0.4 3 0.015 0.01 41.2 161 10000 DNS 1.2 512 74 0.4 3 0.015 0.05 41.4 160 10000 DNS 1.3 512 74 0.4 3 0.015 0.10 41.3 160 10000 DNS 1.4 512 74 0.4 3 0.015 0.24 41.3 21 10000 DNS 1.5 512 74 0.4 3 0.015 0.50 41.4 16 10000 DNS 2.0 1024 142 0.4 3 0.007 0.11 99.0 332.8 1000 DNS 2.1 1024 219 0.4 3 0.007 0.01 147.8 15.6 1000 DNS 2.2 1024 217 0.4 3 0.007 0.06 147.6 15.7 1000 DNS 2.3 1024 216 0.4 3 0.007 0.11 147.9 15.6 1000 DNS 2.4 1024 212 0.4 3 0.007 0.27 146.8 15.7 1000 DNS 2.5 1024 207 0.4 3 0.007 0.53 145.5 15.8 1000 DNS 3.1 2048 302 0.5 3 0.003 0.01 260.9 13.6 1000 DNS 3.2 2048 299 0.5 3 0.003 0.05 258.2 13.8 1000 DNS 3.3 2048 295 0.5 3 0.003 0.11 254.8 14.0 1000 DNS 3.4 2048 314 0.5 3 0.004 0.26 275.6 20.2 1000 域名3.5 2048 321 0.5 3 0.004 0.53 282.9 14.7 1000 表 2. 每个 DNS 的参数概览。R λ 为泰勒尺度雷诺数,˙ E 为代码单位(cu)中的能量注入率,k max 为最大解析波数,η K 为柯尔莫哥洛夫长度尺度,I = σ u ′ 1 /U 为湍流强度,L 11 为由 E ( κ ) 导出的纵向积分长度尺度,L 为平均探针轨道距离,N p 为虚拟探针的数量。湍流强度 I 通过设置探针平均速度来控制,其中 σ u ′ 1 ≈ 1 为均方根纵向速度波动。
1 简介 1 1.1 技术支持 1 1.2 WindFarmer 的安装 1 1.3 快速入门 2 2 WindFarmer 界面 3 2.1 WindFarmer 工作区 3 2.2 窗口类型和相关工具栏 4 2.3 映射窗口光标模式 6 2.4 显示、控制和状态栏 11 3 基础模块 14 3.1 基础模块界面 14 3.2 输入文件 17 3.3 WindFarmer 控制面板 42 3.4 Wind Studio 49 3.5 计算风流量 55 3.6 启动风流量模型计算 63 3.7 修改风流量模型 63 3.8 设置场地约束 63 3.9 能量产量计算 66 3.10 使用现有风力发电机作为参考 72 3.11 布局优化 75 3.12 导出和报告 76 3.13 噪声计算 83 3.14 结果的图形表示 86 4 MCP+ 模块 88 4.1 数据加载器 - 加载时间序列 89 4.2 编辑桅杆、传感器和校准 95 4.3 检查和清理数据 97 4.4 数据汇总统计 104 4.5 数据分析 108 4.6 MCP+ 模块的应用 116 5 多个项目 117 5.1 项目 117 5.2 项目工具界面 117 5.3 项目属性 119 5.4 创建多个项目 122 5.5 累积视觉影响 123 5.6 累积噪声影响 126 6 可视化模块 127 6.1 可视化模块界面 127 6.2 输入数据 129 6.3 创建线框可视化 129 6.4 创建渲染景观可视化 132 6.5 计算 ZVI 地图 134 6.6 照片蒙太奇 135 6.7 可视化功能 136 6.8 可视化布局约束 137 6.9 雷达站 137 6.10 可视化的飞行和动画 140 6.11 创建动画 KML 文件 141 6.12 故障排除 143 7 财务模块 144 7.1 财务模块界面 144 7.2 菜单 145 7.3 操作财务模块 145 7.4 优化财务目标 150 8 湍流强度模块 151 8.1 流量和性能矩阵 151 8.2 高级湍流强度输入 153