得分蒸馏采样(SDS)已被证明是一个重要的工具,可以使大规模扩散先验用于在数据贫困域中运行的任务。不幸的是,SDS具有许多特征性伪像,这些伪影限制了其在通用应用中的有用。在本文中,我们通过将其视为解决从源分布到目标分布的最佳成本传输路径来理解SD及其变体的行为的进展。在这种新的解释下,这些方法试图将损坏的图像(源)传输到自然图像分布(目标)。我们认为,当前方法的特征伪影是由(1)最佳路径的线性近似以及(2)源分布估计差的差。我们表明,校准源分布的文本条件可以产生高质量的生成和翻译结果,而几乎没有额外的开销。我们的方法可以轻松地在许多域上应用,匹配或击败专业方法的性能。我们在文本到2D,基于文本的NERF优化,将绘画转换为真实图像,光学错觉生成和3D素描到现实中演示了其实用性。我们将我们的方法与现有的分数蒸馏采样方法进行了比较,并表明它可以用逼真的颜色产生高频细节。
小型/立方体演示无线/微波电力传输技术和政策,以促进各个级别的SSP教育,比较能源经济学能源,空间,环境政策制造商SSP渠道建模/无线系统设计阵列技术技术阵列技术技术技术阵列技术,用于空间SPSSSSSSSP的交流式换取电源的交流型互换互动的互换综合性综合性综合产品,用于SPSS SPS SPS SPS SPSS集成制造。 无线电源分布(所有表格)小型/立方体演示无线/微波电力传输技术和政策,以促进各个级别的SSP教育,比较能源经济学能源,空间,环境政策制造商SSP渠道建模/无线系统设计阵列技术技术阵列技术技术技术阵列技术,用于空间SPSSSSSSSP的交流式换取电源的交流型互换互动的互换综合性综合性综合产品,用于SPSS SPS SPS SPS SPSS集成制造。无线电源分布(所有表格)
我们处于基础设施开发中的关键时刻:DC电源系统将取代许多商业建筑中的传统AC基础设施。这种过渡有望获得重大的好处,包括节能和改进的数字功率控制。此外,直流电源分布自然与可再生能源和能源存储系统一致,它们固有地生成或存储了直流电源。。随着可再生能源成本在许多领域继续降低,达到或超过电网奇偶校验,直流电源分配和清洁能源之间的协同作用将改变我们的动力和管理现代商业建筑的方式。Cisco领导了二十年来的Ethernet(POE)的发展,将其确立为网络设备的主要远程供电技术。
本文介绍了在龙骨项目框架下开发的高速近红外单光子检测器(空间量子源分布的技术开发,ESA ARTES C&G计划)。基于在Geiger模式下运行的GHz门控雪崩光电二极管,该检测器提供紧凑性,毛皮和冷却能力,无维护操作和高速单光子检测性能。这些高性能使其非常适合极低的光级检测应用,例如太空式量子通信,卫星激光范围,绕行空间碎片光学跟踪和远程激光雷达。本文详细介绍了系统的体系结构和性能指标,涵盖了量子效率,深度计数率,时间抖动,最大计数率,时间窗口宽度以及螺栓效率的概率。实质性增强。
一种有前途的方法来提高今天和明天的高度复杂系统的产量,就是将系统分配到“ chiplets” [1]中。将集成这些芯片以形成整体系统。取决于物理配置,存在两种类型的chiplet集成:2.5-d interposer和3D堆叠。2.5-D集成已成为一种吸引人的选择,因为它允许在具有不同技术节点(异质集成)的插入器上集成多个现成的芯片或智力属性(IPS)。在2.5-D中,芯片在插头包装的顶部并排放置,如图1(a)所示。此外,它们是通过被动间插座底物上的重新分布层(RDL)连接的,该金属层在chiplet之间提供侧向连接,并从外部源分布功率。常见的插入器包装材料是硅,有机和玻璃。
4.1.3.2 伽马技术 ................................................................................................ 56 4.1.3.3 量热法 .......................................................................................................... 57 4.1.4 环境和电磁效应 ................................................................................................ 57 4.1.4.1 中子技术 ...................................................................................................... 58 4.1.4.2 伽马技术(包括 XRF) ...................................................................... 58 4.1.4.3 量热法 ...................................................................................................... 59 4.2 基质和均匀性效应 ................................................................................................ 59 4.2.1 中子技术 ...................................................................................................... 59 4.2.2 中子技术的基质校正方法 ................................................................................ 60 4.2.2.1 附加源(AAS) ............................................................................................. 60 4.2.2.2 通量探针 ............................................................................................................. 62 4.2.2.3环比 ................................................................................................................ 63 4.2.2.4 多重性技术 .............................................................................................. 63 4.2.2.5 成像算法 .............................................................................................. 64 4.2.2.6 实时射线照相术 (RTR) ............................................................................. 64 4.2.2.7 操作员选择的校准 ...................................................................................... 64 4.2.2.8 镉衬里 ...................................................................................................... 65 4.2.3 伽马技术 ...................................................................................................... 65 4.2.4 伽马技术的矩阵校正方法 ............................................................................. 66 4.2.5 量热法 ............................................................................................................. 67 4.2.6 μ 子探测 ............................................................................................................. 67 4.3 样品特定属性 ............................................................................................................. 67 4.3.1 中子技术 ............................................................................................................. 68 4.3.1.1 化学形式 ................................................................................................ 68 4.3.1.2 其他发射中子的放射性核素 .............................................................. 68 4.3.1.3 源分布的影响 ................................................................................ 68 4.3.1.4 中子自倍增效应 ...................................................................................... 68 4.3.1.5 自屏蔽效应 .............................................................................................. 69 4.3.2 伽马技术 ........................................................................................................ 70 4.3.2.1 源分布效应 ........................................................................................ 70 4.3.2.2 自屏蔽(自衰减)效应 ...................................................................... 70 4.3.2.3 非伽马发射体/弱伽马发射体 ............................................................. 71 4.3.3 量热法 ............................................................................................................. 71 4.4 统计约束 ............................................................................................................. 72 4.5 操作约束 ............................................................................................................. 72 5 特性和校准 ............................................................................................. 73 5.1 校准要求 ............................................................................................................. 76 5.2 校准程序 ............................................................................................................. 79 5.2.1 校准功能 ................................................................................................................ 79 5.2.2 位置依赖性 ................................................................................................................ 82 5.2.3 文档记录 ................................................................................................................ 83 5.3 参考标准 ................................................................................................................ 85 5.4 工作标准 ................................................................................................................ 86 5.5 不确定度 ...................................................................................................................... 87 6 不确定度的处理 ............................................................................................. 90 6.1 范围 ............................................................................................................................. 91 6.2 什么是测量不确定度? ............................................................................................. 91 6.3 评估测量不确定度的步骤 ............................................................................................. 92 6.4 示例 ............................................................................................................................. 971 源分布的影响 ................................................................................................ 70 4.3.2.2 自屏蔽(自衰减)效应 .............................................................................. 70 4.3.2.3 非伽马辐射源/弱伽马辐射源 .............................................................. 71 4.3.3 量热法 ............................................................................................................. 71 4.4 统计约束 ............................................................................................................. 72 4.5 操作约束 ............................................................................................................. 72 5 特性和校准 ............................................................................................. 73 5.1 校准要求 ............................................................................................................. 76 5.2 校准程序 ............................................................................................................. 79 5.2.1 校准功能 ............................................................................................................. 79 5.2.2 位置依赖性 ............................................................................................................. 82 5.2.3 文档 ............................................................................................................. 83 5.3 参考标准................................................................................................................ 85 5.4 工作标准.............................................................................................................. 86 5.5 不确定度.............................................................................................................. 87 6 不确定度的处理........................................................................ 90 6.1 范围................................................................................................................ 91 6.2 什么是测量不确定度? ...................................................................................... 91 6.3 测量不确定度的估算步骤 ............................................................................. 92 6.4 示例............................................................................................................. 971 源分布的影响 ................................................................................................ 70 4.3.2.2 自屏蔽(自衰减)效应 .............................................................................. 70 4.3.2.3 非伽马辐射源/弱伽马辐射源 .............................................................. 71 4.3.3 量热法 ............................................................................................................. 71 4.4 统计约束 ............................................................................................................. 72 4.5 操作约束 ............................................................................................................. 72 5 特性和校准 ............................................................................................. 73 5.1 校准要求 ............................................................................................................. 76 5.2 校准程序 ............................................................................................................. 79 5.2.1 校准功能 ............................................................................................................. 79 5.2.2 位置依赖性 ............................................................................................................. 82 5.2.3 文档 ............................................................................................................. 83 5.3 参考标准................................................................................................................ 85 5.4 工作标准.............................................................................................................. 86 5.5 不确定度.............................................................................................................. 87 6 不确定度的处理........................................................................ 90 6.1 范围................................................................................................................ 91 6.2 什么是测量不确定度? ...................................................................................... 91 6.3 测量不确定度的估算步骤 ............................................................................. 92 6.4 示例............................................................................................................. 9772 5 特性和校准 ................................................................................ 73 5.1 校准要求 ...................................................................................................... 76 5.2 校准程序 ...................................................................................................... 79 5.2.1 校准功能 ................................................................................................ 79 5.2.2 位置依赖性 ................................................................................................ 82 5.2.3 文档 ............................................................................................................. 83 5.3 参考标准 ............................................................................................................. 85 5.4 工作标准 ............................................................................................................. 86 5.5 不确定性 ............................................................................................................. 87 6 不确定性的处理 ............................................................................. 90 6.1 范围 ............................................................................................................. 91 6.2 什么是测量不确定度? ........................................................................... 91 6.3 测量不确定度评估步骤 .............................................................................. 92 6.4 示例 .............................................................................................................. 9772 5 特性和校准 ................................................................................ 73 5.1 校准要求 ...................................................................................................... 76 5.2 校准程序 ...................................................................................................... 79 5.2.1 校准功能 ................................................................................................ 79 5.2.2 位置依赖性 ................................................................................................ 82 5.2.3 文档 ............................................................................................................. 83 5.3 参考标准 ............................................................................................................. 85 5.4 工作标准 ............................................................................................................. 86 5.5 不确定性 ............................................................................................................. 87 6 不确定性的处理 ............................................................................. 90 6.1 范围 ............................................................................................................. 91 6.2 什么是测量不确定度? ........................................................................... 91 6.3 测量不确定度评估步骤 .............................................................................. 92 6.4 示例 .............................................................................................................. 97........................................... 91 6.3 测量不确定度评估步骤 ...................................................................... 92 6.4 示例 .......................................................................................................... 97........................................... 91 6.3 测量不确定度评估步骤 ...................................................................... 92 6.4 示例 .......................................................................................................... 97
摘要 — 诸如老化和热应力等环境因素会严重影响集成电路 (IC) 的电磁兼容性行为。工业中可以使用标准化的 IC 传导发射模型 (ICEM-CE) 和 IC 传导抗扰模型 (ICIM-CI) 来预测 IC 和印刷电路板级别的电磁行为。然而,这些模型没有考虑到老化和极端温度变化的影响。在本文中,使用采用绝缘体上硅技术设计的定制 IC,其中包含多个独立的模拟模块,通过测量和晶体管级模拟来表征老化和温度对传导发射和抗扰的影响。执行高加速温度和湿度应力测试 (HAST) 来评估老化及其对 IC 参数的影响。结果表明,无源分布网络仅受热应力的影响,而不会受到 HAST 老化的影响。后者主要影响 IC 中的有源元件,并通过固有的永久性退化机制降低传导发射和抗扰度水平。此外,热应力主要导致晶体管特性(如阈值电压和有效迁移率)发生漂移,从而影响传导发射和抗扰度水平并导致软故障。从测量和模拟中收集的所有漂移/公差都经过了表征,以便可以将它们纳入 ICEM-CE 和 ICIM-CI 标准的未来版本中。
联合学习允许分布式的医疗机构可以协作学习具有隐私保护的共享预测模型。在临床部署时,接受联邦学习的模型仍会在联邦外面完全看不见的霍斯群岛上使用时仍会遭受性能下降。在本文中,我们指出并解决了联合域的生成(FedDG)的新型问题设置,该设置旨在从多个分布式源域中学习联合模型,以便它可以直接概括为看不见的目标域。我们提出了一种新颖的方法,在持续频率空间(ELCF)中称为情节学习,通过启动每个客户端在数据分散率的挑战性约束下利用多源数据分布来利用多源数据分布。我们的方法通过有效的连续频率空间插值机制以隐私保护方式传输客户之间的分布信息。通过转移的多源分布,我们进一步仔细设计了面向边界的情节学习范式,以将本地学习暴露于域分布变化,尤其是在医学图像分割场景中尤其满足模型概括的挑战。在两个医学图像分割任务上,我们的方法的有效性优于最先进的表现和深入消融实验。可以在https://github.com/liuquande/feddg-elcfs上使用代码。
摘要:已知,测量的超高能宇宙射线的能量谱和簇射最大深度分布的组合拟合可以约束具有均匀源分布的天体物理模型的参数。对宇宙射线到达方向分布的研究表明,与一部分通量是非各向同性的并与附近的射电星系半人马座 A 或星暴星系等目录相关的模型有更好的一致性。在这里,我们通过同时拟合到达方向、能量谱和在皮埃尔·奥格天文台测量的成分数据,提出了两种分析的新组合。该模型考虑了刚度相关的磁场模糊和由传播过程中的相互作用形成的目录贡献的能量相关演变。我们发现,包含星暴星系目录的通量贡献约为 20%(40 EeV),磁场模糊约为 20 ◦(10 EV 刚度)的模型可以同时描述所有三个可观测量。星暴星系模型具有 4 的显著性优势。与仅具有均匀分布背景源的参考模型相比,显著性为 5 σ(考虑实验系统效应)。通过研究以半人马座 A 作为单一源并结合均匀背景的场景,我们确认该天空区域对观测到的各向异性信号具有主导贡献。然而,包含喷流活动星系核目录的模型(其通量与 γ 射线发射成比例)不受欢迎,因为它们无法充分描述测量到的到达方向。
摘要。对参与物质的化学组成(PM)的了解对于理解其源分布,确定有毒元素的潜在健康影响以及发展有效的空气污染策略至关重要。传统方法用于分析PM组合的方法,例如在过滤器底物上的收集和频率分析的亚分析方法,例如,感应性耦合的血浆质谱法(ICP-MS)是耗时的,并且由于多个准备型的步骤而导致的测量误差,并且易于测量误差。基于非破坏性能量分散X射线荧光(EDXRF)的新兴近实时技术提供了连续监测和源代码的优势。这项研究通过应用直接的性能评估(包括)(a)检测极限(lod),(b)对不确定来源的识别和量化,以及(c)测量和比较的识别和比较,对三分之二的卢克斯(Luxem trast)的研究结果(c), 。 我们使用UC Davis的多元素参考材料(ME-RMS)进行校准,并在2023年春季和夏季进行了测量。 在1 h时间分离时,Ni,Cu,Zn和Pb等有毒元素的LOD低于3 ng m-3。 观察到更高的LOD的较轻元素(例如, al,si,s,k,ca)。 对高于20 ng m -3的元素浓度的扩展不确定性在5%至25%之间,浓度低于10 ng m -3,达到。 我们使用UC Davis的多元素参考材料(ME-RMS)进行校准,并在2023年春季和夏季进行了测量。 在1 h时间分离时,Ni,Cu,Zn和Pb等有毒元素的LOD低于3 ng m-3。 观察到更高的LOD的较轻元素(例如, al,si,s,k,ca)。 对高于20 ng m -3的元素浓度的扩展不确定性在5%至25%之间,浓度低于10 ng m -3,达到。我们使用UC Davis的多元素参考材料(ME-RMS)进行校准,并在2023年春季和夏季进行了测量。在1 h时间分离时,Ni,Cu,Zn和Pb等有毒元素的LOD低于3 ng m-3。观察到更高的LOD的较轻元素(例如,al,si,s,k,ca)。对高于20 ng m -3的元素浓度的扩展不确定性在5%至25%之间,浓度低于10 ng m -3,达到