10。使用最佳有限元预测,Pradhan等人,对尺度解析模拟的统一理解和对湍流的近壁建模。流体力学杂志:以湍流通道流为例,最佳有限元投影用于根据适用于这些方法的不同分辨率的投影来实现壁溶解的极限,混合兰率限制和WMLES限制。我们进一步以近壁底层底层的速度来表征WMLES中的滑动速度,并发展出普遍的缩放关系,该关系在后验测试中得到了验证。提供了改进的滑动壁模式的指导,包括动态过程的目标。在纸上的关注即将使用此方法进行预测性LE中的动态滑移建模。
锂离子电池 (LIB)、锂硫 (Li-S) 电池和固态碱金属电池等储能系统被视为便携式设备和电动汽车 (EV) 最有前途的电源 (图 1b)。[1] 随着电子设备和电动汽车需求的快速增长,开发具有长循环寿命和高能量密度的下一代电池迫在眉睫。[2] 储能系统的瓶颈包括结构不稳定、氧化还原动力学缓慢以及电子导电性和活性物质的损失,导致循环寿命短和能量密度低。[3] 例如,高容量负极材料在循环过程中会发生高达 400% 的大体积变化,导致结构不稳定以及电子和离子传输退化。[4] 再比如,Li-S 电池的主要问题是硫正极在循环过程中存在不导电和多硫化物溶解的问题,导致容量低
氧气通过在呼吸过程中加速电子的转移来帮助生物产生能量。由于呼吸,微生物和海床的土壤动物自然释放二氧化碳。在有许多动物和有机碳的栖息地中,您通常具有海床的总呼吸(动物 +细菌)和高CO 2排放/排放。这种排放量最高,在海底的上层中,氧气大量存在,并且较高的温度加快了溶解的速度。在富含有机物质的细小沉积物中,氧气通常仅穿透表面下的1 mm。没有氧气,某些微生物仍然可以破坏有机碳,但是该过程要慢得多。如果干扰将有机碳暴露于氧气中,它将更快地分解为Co 2。
Exide 的智能电化学解决方案可延长电池寿命。商用车中电池早期故障很常见,这是由于暴露在深度放电条件下造成的。电池面临的挑战包括城市配送的频繁启动和停止,以及长途卡车的夜间加热和照明。这种压力会导致硫酸盐化和酸分层,从而损害电池寿命。借助 Exide Carbon Boost®,独特的碳添加剂可提高硫酸盐颗粒溶解的速度。这可以加快充电速度,防止硫酸盐化并减少分层。碳添加剂还可以促进充电过程中的受控气体,从而使电解质保持混合并进一步减少分层。Carbon Boost 的好处:• 提高充电接受度 • 加快充电速度 • 减少酸分层 • 增强循环耐久性
根据联合联合国艾滋病毒/艾滋病联合计划(UNAIDS),艾滋病毒在全球范围内仍然是一个主要的公共卫生问题,估计在2023年患有艾滋病毒的3,000万人(1)。撒哈拉以南非洲(SSA)国家的发病率最高,近70%的艾滋病毒/艾滋病负担(1)。在乌干达,艾滋病毒的患病率从2011年的7.3%下降到2020年的5.5%,每年有54,000个新感染(2)。与HIV相关的发病率和死亡率有了显着改善。患有艾滋病毒(PLWH)的人现在寿命更长,并且容易受到非传染性疾病(NCD)(如2型糖尿病)(T2DM)(3)(3)。T2DM。已经提出了几种潜在的病理生理缺陷,包括胰岛素抵抗,胰腺β-细胞功能障碍,脂肪溶解的增加和降低的肠静脉毒性作用,以解释T2DM中观察到的高血糖。
河口是受潮汐作用和淡水影响影响的浅沿海环境。由于海洋和新鲜水的混合,河口是自然动态的,不稳定的环境,物理化学条件在每小时,每日,季节,季节性,年度和衰老量表上振荡1。气候变化有望通过改变这些振荡的幅度以及改变长期平均物理化学条件(例如平均温度,盐度,盐度和溶解的氧气水平)来改变河口的物理结构和生物学功能。除了温度的升高外,沿海和河口环境的气候变化还可以改变温度变化(陆地和海洋),风和洋流,淡水流量(降雨),极端天气事件,海平面和海洋酸化;所有这些都会对生活在河口中的物种产生影响。在本章中,这些不同的变化驱动力,例如温度,降雨和水文学,洪水和干旱,海平面上升,风暴潮和海洋