卡尔曼滤波器组在飞机发动机故障诊断中的应用 Takahisa Kobayashi QSS Group, Inc. 俄亥俄州克利夫兰 44135 电子邮件:Takahisa.Kobayashi@grc.nasa.gov Donald L. Simon 美国陆军研究实验室 格伦研究中心 俄亥俄州克利夫兰 44135 电子邮件:Donald.L.Simon@grc.nasa.gov 摘要 本文将卡尔曼滤波器组应用于飞机燃气涡轮发动机传感器和执行器故障检测和隔离 (FDI) 以及组件故障检测。这种方法使用多个卡尔曼滤波器,每个滤波器都用于检测特定的传感器或执行器故障。如果确实发生故障,除使用正确假设的滤波器之外的所有滤波器都会产生较大的估计误差,从而隔离特定故障。同时,估计了一组指示发动机部件性能的参数,以检测突然退化。将所提出的 FDI 方法应用于标称和老化条件下的非线性发动机仿真,并给出了巡航运行条件下各种发动机故障的评估结果。证明了所提出的方法能够可靠地检测和隔离传感器和执行器故障。术语 A16 可变旁通管道面积 A8 喷嘴面积 BST 增压器 CLM 组件级模型 FAN 风扇 FDI 故障检测和隔离 FOD 异物损坏 HPC 高压压缩机 HPT 高压涡轮 LPT 低压涡轮 P27 HPC 入口压力 PS15 旁通管道静压 PS3 燃烧室入口静压 PS56 LPT 出口静压 T27D 增压器入口温度 T56 LPT 出口温度
摘要 — 肢体运动分类可为非侵入式脑机接口提供控制命令。以往对肢体运动分类的研究主要集中在左/右肢的分类;然而,尽管上肢运动的分类为脑机接口提供了更多主动诱发的控制命令,但上肢运动的不同类型分类却常常被忽视。尽管如此,很少有机器学习方法可以作为肢体运动多类分类的最新方法。本文重点研究上肢运动的多类分类,提出了多类滤波器组任务相关成分分析 (mFBTRCA) 方法,该方法包括三个步骤:空间滤波、相似性测量和滤波器组选择。空间滤波器,即任务相关成分分析,首次用于上肢运动的多类分类。
摘要。最近提出的量子系统使用频率复用量子比特技术来读取电子器件,而不是模拟电路,以提高系统的成本效益。为了恢复单个通道以供进一步处理,这些系统需要一种解复用或通道化方法,该方法可以低延迟处理高数据速率,并且使用很少的硬件资源。本文介绍了一种使用多相滤波器组 (PFB) 信号处理算法的低延迟、适应性强的基于 FPGA 的通道器。由于只需设计一个原型低通滤波器来处理所有通道,因此 PFB 可以轻松适应不同的要求,并进一步简化滤波器设计。由于每个通道都重复使用相同的滤波器,与传统的数字下变频方法相比,它们还降低了硬件资源利用率。实现的系统架构具有广泛的通用性,允许用户从不同数量的通道、采样位宽度和吞吐量规格中进行选择。对于使用 28 系数转置滤波器和 4 个输出通道的测试设置,所提出的架构可产生 12.8 Gb/s 的吞吐量和 7 个时钟周期的延迟。
摘要 —非侵入式脑机接口可以帮助人类控制外部设备。先前对肢体运动分类的研究主要集中在左/右肢的分类;然而,尽管上肢运动的分类在脑机接口中提供了更多主动诱发的控制命令,但它常常被忽视。尽管如此,没有任何机器学习方法可以作为肢体运动多类分类的基线方法。本文重点研究上肢运动的多类分类,提出了多类滤波器组任务相关成分分析 (mFBTRCA) 方法,该方法包括三个步骤:空间滤波、相似性测量和滤波器组选择。空间滤波器,即任务相关成分分析,首先用于去除脑电信号中的噪声。典型相关性测量空间滤波信号的相似性并用于特征提取。相关特征是从多个低频滤波器组中提取的。最小冗余最大相关性方法从所有相关特征中选择必要特征,最后使用支持向量机对所选特征进行分类。使用两个数据集评估了与以前使用的模型相比所提出的方法。其中,mFBTRCA 实现了 0.4022 ± 0.0709(7 个类别)的分类准确率
机器学习对于模式识别很有用,如果允许它访问患者数据,它可以注意到人类医生可能忽略的模式,这可以用来预测一个人是否有患上医生无法预料到的疾病的风险。在本文中,作者提出了一种经验 Riglit 小波变换算法。在该算法中,作者融合了从 Ridgelet 和 Little wood 经验小波变换获得的 CT 和 MR 图像的滤波器组。融合使用了四种可能的组合。图像边界被评估为性能参数。这些参数有助于理解给定 CT 和 MR 图像中的小元素和细节。本文的目的是通过融合使用不同组合的 CT 和 MR 图像来对图像中的特定模式进行分类和提取。通过使用相同技术获得的融合 CT-MT 图像的滤波器组来验证所提出的算法。
摘要:已经进行了大量研究来从各个方面提高基于运动想象的脑机接口 (BCI) 分类性能。然而,在客观和主观数据集上比较他们提出的特征选择框架性能的研究有限。因此,本研究旨在提供一种新颖的框架,该框架将不同频带的空间滤波器与双层特征选择相结合,并在已发布和自获取的数据集上对其进行评估。对脑电图 (EEG) 数据进行预处理并将其分解为多个频率子带,然后根据 Fisher 比率和最小冗余最大相关性 (mRmR) 算法提取、计算和排序其特征。通过线性判别分析 (LDA) 选择信息滤波器组进行最佳分类。研究结果首先表明,所提出的方法在准确性和 F1 分数方面可与其他传统方法相媲美。研究还发现,手与脚的分类比左手与右手的分类更具可辨性(差异为 4-10%)。最后,在应用于小规模数据时,滤波器组通用空间模式(FBCSP,无特征选择)算法的性能明显低于所提出的方法(p = 0.0029、p = 0.0015 和 p = 0.0008)。
摘要 — 了解好奇心背后的神经生理机制并因此能够识别一个人的好奇心水平,将为神经科学、心理学和计算机科学等众多领域的研究人员和设计师提供有用信息。揭示好奇心的神经相关性的第一步是在好奇状态下收集神经生理信号,以便开发信号处理和机器学习 (ML) 工具来识别好奇状态和非好奇状态。因此,我们进行了一项实验,其中我们使用脑电图 (EEG) 测量参与者在被诱导进入好奇状态时的大脑活动,使用琐事问答链。我们使用两种 ML 算法,即滤波器组公共空间模式 (FBCSP) 与线性判别算法 (LDA) 相结合,以及滤波器组切线空间分类器 (FBTSC),以将好奇的 EEG 信号与非好奇的 EEG 信号进行分类。总体结果表明,两种算法在 3 到 5 秒的时间窗口内均获得了更好的性能,表明最佳时间窗口长度为 4 秒(FBTSC 的分类准确率为 63.09%,FBCSP+LDA 的分类准确率为 60.93%)可用于基于 EEG 信号的好奇心状态估计。索引术语 — 好奇心 - 心理状态 - 学习 - 脑电图 - 被动脑机接口
摘要:情绪识别对于理解人类情感状态具有重要意义,具有多种应用。脑电图 (EEG) 是一种捕捉大脑活动的非侵入性神经成像技术,在情绪识别方面引起了广泛关注。然而,现有的基于 EEG 的情绪识别系统仅限于特定的感觉模式,阻碍了它们的适用性。我们的研究创新了 EEG 情绪识别,提供了一个全面的框架来克服感觉聚焦限制和跨感觉挑战。我们使用多模态情绪模拟(三种感觉模式:音频/视觉/视听,两种情绪状态:愉悦或不愉悦)收集跨感觉情绪 EEG 数据。所提出的框架——滤波器组对抗域自适应黎曼方法 (FBADR)——利用滤波器组技术和黎曼切线空间方法从跨感觉 EEG 数据中提取特征。与黎曼方法相比,滤波器组和对抗域自适应可以分别提高 13.68% 和 8.36% 的平均准确率。分类结果的比较分析证明,所提出的 FBADR 框架实现了最先进的跨感官情感识别性能,平均准确率达到 89.01% ± 5.06%。此外,所提出方法的稳健性可以确保在信噪比 (SNR) ≥ 1 dB 下具有较高的跨感官识别性能。总的来说,我们的研究为基于 EEG 的情感识别领域做出了贡献,提供了一个全面的框架,克服了感官导向方法的局限性,并成功解决了跨感官情况的困难。
摘要 — 基于运动想象的脑机接口 (MI-BCI) 需要校准程序来为新用户调整系统。此过程非常耗时,并且会阻止新用户立即使用系统。由于 MI 信号的主体相关特性,开发独立于主体的 MI-BCI 系统以减少校准阶段仍然具有挑战性。已经开发了许多基于机器学习和深度学习的算法来从 MI 信号中提取高级特征,以提高 BCI 系统对主体的泛化能力。然而,这些方法基于监督学习并提取可用于区分各种 MI 信号的特征。因此,这些方法无法在 MI 信号中找到共同的潜在模式,并且其泛化水平有限。本文提出了一种基于监督自动编码器 (SAE) 的独立于主体的 MI-BCI 来绕过校准阶段。建议的框架在 BCI 竞赛 IV 中的数据集 2a 上得到了验证。模拟结果表明,在九个受试者中的八个中,我们的 SISAE 模型在平均 Kappa 值方面优于传统的和广泛使用的 BCI 算法、常见空间和滤波器组常见空间模式。