随机 III 期 BIL-CAP 试验的最新有争议的结果支持使用辅助卡培他滨,因为与单独观察相比,实验组的 OS 更长(分别为 53 个月和 36 个月,风险比 [HR] 0.75,95% CI 0.58-0.97;在预设的按方案分析中 P = 0.0028)。14 对于晚期 BTC 患者,继具有里程碑意义的 ABC-02 试验比较顺铂-吉西他滨 (CisGem) 双药与吉西他滨单药治疗后,一线全身化疗代表了目前的标准治疗方法。 15 根据这项针对 410 例 BTC 的 III 期试验结果,CisGem 报告称,与吉西他滨相比,该药物在总体人群以及不同解剖亚组中具有统计学上显著的 OS 优势(11.7 个月 vs. 8.1 个月,HR 0.64,95% CI 0.52-0.80;P < 0.001)。这些结果已得到日本 BT22 试验的证实,参考双药组的中位 OS 为 11.2 个月,而接受吉西他滨单药治疗的患者中位 OS 为 7.7 个月。16
在这项 I 期剂量递增研究中,我们试图确定间变性淋巴瘤激酶/c-ROS 致癌基因 1 受体 (ALK/ROS1) 抑制剂色瑞替尼与吉西他滨为基础的化疗联合治疗晚期实体瘤患者的最大耐受剂量 (MTD)。次要目标是表征这些组合的安全性、药代动力学和初步疗效,并确定疗效的潜在生物标志物。色瑞替尼与吉西他滨 (Arm 1)、吉西他滨/nab-紫杉醇 (Arm 2) 或吉西他滨/顺铂 (Arm 3) 联合使用。通过串联质谱检测 (LC-MS/MS) 测量血浆中的药物浓度。我们通过免疫组织化学分析了存档肿瘤组织中的 ALK、ROS1、肝细胞生长因子受体 (c-MET) 和 c-Jun N-末端激酶 (JNK) 表达。第 2 组因毒性而提前关闭。21 名患者可评估剂量限制
小野淳一 川崎医疗福祉大学 医疗技术学部 临床工程系 〒701-0193 冈山县仓敷市松岛 288 电话:086-462-1111 传真:086-462-1193
摘要 微生物组的药物代谢会影响抗癌治疗的成功。我们之前提出,具有抗菌活性的化疗可以选择细菌药物代谢中的适应性,从而无意中影响宿主的化学耐药性。我们证明,对氟嘧啶化疗的进化耐药性降低了其在以药物进化细菌为食的蠕虫中的疗效(Rosener 等人,2020 年)。在这里,我们研究了一个模型系统,该系统可以捕捉肿瘤微环境中可能发生的局部相互作用。定植于胰腺肿瘤的伽马变形菌可以降解核苷类似物化疗药物吉西他滨,从而增加肿瘤的化学耐药性。利用大肠杆菌中的基因筛选,我们绘制了所有导致吉西他滨耐药的功能丧失突变。令人惊讶的是,我们推断三分之一的顶级耐药突变会增加或减少细菌药物的分解,因此可以降低或增加局部环境中的吉西他滨负荷。在三种大肠杆菌菌株中进行的实验表明,进化的适应性趋于核苷通透酶 NupC 的失活,这种适应性增加了共培养癌细胞的药物负担。这两项研究通过表明细菌-药物相互作用可以对药物活性产生局部和系统性影响,为微生物组适应化疗的潜在影响提供了互补的见解。
vyxeos(daunorubicin和cytarabine)脂质体用于注射,是以固定的1:5摩尔比的脂质体制剂和细胞蛋白滨的脂质体配方。daunorubicin的1:5摩尔比:细胞链滨已被证明具有协同作用,可在体外和鼠模型中杀死白血病细胞。daunorubicin具有抗魔法和细胞毒性活性,这是通过与DNA形成复合物,抑制拓扑异构酶II活性,抑制DNA聚合酶活性,影响基因表达的调节并产生DNA受损自由基的。细胞丁滨是一种细胞循环特异性抗塑料剂,仅在细胞分裂的S期间影响细胞。细胞丁滨主要通过抑制DNA聚合酶起作用。基于动物数据,脂质体进入并持续在骨髓中,在那里它们被骨髓细胞完整地吸收。在白血病小鼠中,白血病细胞比正常的骨髓细胞更大程度地吸收脂质体。在细胞内在化后,脂质体在细胞内环境中释放细胞押滨和daunorubicin。
摘要:在单光子水平上修改光场是即将到来的量子技术面临的一个关键挑战,可以通过集成量子光子学以可扩展的方式实现。激光写入的金刚石光子学提供了与光纤技术相匹配的 3D 制造能力和大模场直径,尽管限制了单发射器级别的协同性。为了实现大的耦合效率,我们将通过高数值孔径光学器件激发单个浅植入硅空位中心与激光写入 II 型波导辅助检测相结合。我们展示了单发射器消光测量,协同率为 0.0050,相对 beta 因子为 13%。共振光子的传输揭示了从准相干场中减去单光子,从而产生超泊松光统计。尽管内在的协同性很低,但我们的架构使光场工程能够在单量子水平上进行集成设计。激光写入结构可以三维制造,并与光纤阵列具有自然连接性。关键词:激光写入、光子工程、集成量子光学、金刚石色心、量子发射器■ 简介
第 39 天 第 60 天 第 39 天 第 60 天 第 39 天 第 60 天 60 mg/kg IP Q4D 吉西他滨 + 10 mg/kg IV Q4D nab-紫杉醇 0.72 [0.43 - 1.10] 0.53 [0.16 - 1.30] 10.0 [-3.50 - 26.0] 9.9 [-4.60 - 26.0] 添加剂 添加剂 75 mg/kg PO BID IMM-1-104 + 60 mg/kg IP Q4D 吉西他滨 0.21 [0.14 - 0.30] 0.28 [0.14 - 0.57] 12.0 [7.30 - 19.0] 4.00 [1.40 - 8.50] 协同作用 协同作用 125 mg/kg PO BID IMM-1-104 + 60 mg/kg IP Q4D 吉西他滨 0.18 [0.12 - 0.27] 0.12 [0.042 - 0.36] 4.50 [2.60 - 7.70] 1.00 [0.39 - 2.10] 协同作用 协同作用 75 mg/kg PO BID IMM-1-104 + 60 mg/kg IP Q4D 吉西他滨 + 10 mg/kg IV Q4D nab-紫杉醇 0.23 [0.14 - 0.39] 0.22 [0.06 - 0.96] 4.40 [2.00 - 8.40] 0.83 [0.02 - 2.80] 协同作用 协同作用 125 mg/kg PO BID IMM-1-104 + 60 mg/kg IP Q4D 吉西他滨 + 10 mg/kg IV Q4D nab-紫杉醇 0.41 [0.21 - 0.77] 0.83 [0.21 - 3.60] 1.20 [0.28 - 2.90] 0.04 [-0.21 - 0.47] 协同添加剂
结果:本分析共纳入 64 名患者。中位无进展生存期 (mPFS) 为 5.6(4.6 – 6.6)个月。62.5% 的患者在接受伊奈替单抗治疗前接受过两线或两线以上治疗。与伊奈替单抗联合使用的最常见化疗和抗 HER2 方案分别是长春瑞滨 (60.9%) 和吡咯替尼 (62.5%)。接受伊奈替单抗加吡咯替尼加长春瑞滨治疗的患者获益最多 (p=0.048),中位无进展生存期为 9.3(3.1 – 15.5)个月,客观缓解率为 35.5%。对于接受吡咯替尼治疗的患者,伊奈替单抗加长春瑞滨加吡咯替尼药物的中位无进展生存期为 10.3(5.2 – 15.4)个月。治疗方案(伊奈替单抗加长春瑞滨加吡咯替尼 vs. 其他治疗药物)和内脏转移(是 vs. 否)是 PFS 的独立预测因素。接受伊奈替单抗加长春瑞滨加吡咯替尼治疗的内脏转移患者的中位 PFS 为 6.1(5.1 – 7.1)个月。伊奈替单抗的毒性是可以耐受的,最常见的 3/4 级不良事件是白细胞减少症(4.7%)。