自20世纪30年代以来,人们就已认识到服装在人类生物气象学研究中的重要性(例如,Winslow等人,1937年;Gagge等人,1938年;Winslow等人,1938年;Gagge等人,1941年)。在这些研究中,人们运用实验和理论工具研究了服装的作用,将其作为人体-大气界面的一个重要输入变量。在20世纪下半叶(例如,Auliciems和de Freitas,1976年;de Freitas,1979年),服装被视为并被解读为人类对环境条件的“反应”,并被分析为一个决定性模型的输出。如今,服装对生物气象热调节的影响通常以两种方式考虑:作为热生理模型(例如,Fiala 等人,2012)的输入参数(例如,Havenith 等人,2012)或作为代表热适应行为的模型输出(Lin,2009;Potchter 等人,2018)。在这种情况下,r cl 可用作表示人体热交换不平衡程度的量度。当热量过剩时,人体需要冷却以达到能量平衡。此时 r cl 值为负。请注意,在迄今为止发表的研究中根本没有考虑负服装阻力值,而只是将其等于零,理由是“由于在公共场合裸体是不可接受的,因此 clo 值 ≤ 0 被设置为零”(Yan,2005)。本研究中也使用了负的服装阻力值,因为当服装被视为一种热调节器而忽略其对人体行为的依赖性时,这些值是可以解释的。相反,当存在热量不足时,人体需要变暖才能达到能量平衡。在这种情况下,r cl 值为正。当人体处于能量平衡状态时,既不需要冷却也不需要变暖,感觉这种状态很舒适。在这种情况下,r cl 非常接近或等于零。服装阻力参数是一个复数,因为它取决于人和环境的特征。在人类特征中,个人、社会方面以及活动类型是最具决定性的。活动类型决定代谢活动率,该率在 40 到 600 Wm − 2 之间变化