e,频段G基本上是非分散性的,而与双共振过程有关的峰具有其频率和强度(与频带G相关),取决于激光能量。在二阶频谱中,主线为:2450 cm-1,2705 cm-1(g'),2945 cm-1(d+g),3176 cm-1(2g)和3244 cm-1(2d')。g频段也起源于双共振过程,但归因于二阶扩散,这涉及与两个声子的相互作用(Antunes,2006; Malard,2009)。例外,只有NV和GOG样品显示出更为明显的峰值至约3250 cm-1,指的是2D频段'。
缺乏能够在金星表面运行和生存的长寿命电源从根本上限制了对这颗迷人星球的实地探索。作为 NASA 创新先进概念 (NIAC) 第一阶段研究的一部分,评估和开发了一种创新的任务架构,利用无线方式将电力从在金星大气中运行的车辆传输到地面着陆器。确定的最有前途的架构是动力飞机,它使用高温太阳能电池阵列在金星大气的上游收集太阳能,并将这些能量存储在机载高温可充电电池中。然后,这个空中平台将下降到云层下方,通过激光能量束将能量传输到金星表面的着陆器。地面着陆器将包括一个激光能量转换器,用于接收光束光能,将其转换为电能,并将其传输到机载高温可充电电池,供着陆器负载使用。在能量传输之后,飞机将上升到更高的高度,再次启动这个循环。通过微波传输传输电力的方案在技术上不可行,因为大气对这些波长的吸收作用很大。同样,对以轨道平台为收集和传送平台的架构的分析也发现,出于同样的原因,在技术上不可行。将气球技术用于飞行器/传送平台显示出一定的前景,但是,这种任务架构需要多个气球平台才能在 60 天的任务中实现着陆器的目标平均功率水平(10 W),以及某种技术成熟度较低的控制机制(叶片或转子)才能飞越着陆器位置。NIAC 第二阶段研究提出了结合激光功率传送的基于飞机的概念以供进一步开发。
摘要:用超短激光脉冲对透明材料的受控处理需要详细而精确的了解,从激光能量沉积和材料内部能量转化到流体动力学弛豫和机械响应中的各种激光 - 物质相互作用机制。为了解决这个问题,我们首先基于飞秒泵和探针显微镜偏置镜开发了多时间的实验方法。泵是一个360-FS,1-μJ红外(1030 nm)激光脉冲,分开以提供515 nm的飞秒探头,并延迟可调节从飞秒到纳米秒的延迟。获得的时间分辨的阴影图像允许测量瞬态探针传输。然后,载体密度是通过使用Beer-Lambert Law和Drude模型方法来确定的,证明了大部分熔融二氧化硅内部略有临界等离子体的超快形成。并行,定量双折射图像通过使用光弹性定律来测量压力,从而通过发射GPA压力波的发射光弹性定律揭示了吸收的激光能量,这是激光脉冲后几百个picseconds。然后,使用多尺度型物理模型来解释实验观察结果,计算电子动力学,激光传播和流体动力响应。实验验证后,模拟允许确定局部基本材料特性(应力,密度和温度)的时间演变。我们的方法将来可以用来解释由超短激光脉冲引起的机械驱动的透明材料结构。实验和模拟结果的这种组合使我们能够定量讨论不同激光能量弛豫通道在发现整个相互作用情况的材料中的重要性。我们的模型预测20-GPA的最大初始应力载荷,最高晶格温度达到3.5 10 4K。我们还表明,通过发射弱冲击波,消散了总吸收激光能量的〜2%。
ABL 是有史以来最复杂的军事武器系统,其设计目的是在弹道导弹助推阶段摧毁它们,此时激光的能量足以削弱导弹结构,使其因飞行压力而发生灾难性故障。该武器系统包括一个红外监视系统(用于检测发射)、一个快速跟踪系统和目标照明激光器(用于精确跟踪)以及一个信标照明激光器(用于向自适应光学系统生成信息,该系统可预补偿高能 COIL 光束,并允许大气将激光能量聚焦在目标上)。虽然该杀伤链的每个部分都提出了复杂的挑战,但所有这些系统的集成使复杂性成倍增加。无论如何,该计划迄今为止已经解决了挑战,并按计划为国家提供了改变游戏规则的能力。
拍瓦激光器的聚焦功率密度接近 10 21 W/cm 2(几乎是每平方厘米上集中了十亿亿瓦的能量),能量密度为每立方厘米 300 亿焦耳,远远超过恒星内部的能量密度。相关的电场非常强,大约比将电子束缚在原子核上的电场强一千倍,它们将电子从原子中剥离出来,并将其加速到相对论速度(即与光速相当)。与传统粒子加速器相比,这种加速发生在微观尺度上。巨大的电场将巨大的“颤动”能量传递给等离子体中的自由电子,从而使一些电子失去振荡。这随后导致激光能量转换为电子热能,进而加热离子并形成致密的高温等离子体。
2022 年 12 月 5 日,LLNL 团队在国家点火装置 (NIF) 向装有部分冻结氢同位素的胶囊的黑腔发射了 192 束激光。结果是聚变点火——产生的聚变能量比传送到 NIF 目标的激光能量还要多。实验向目标传送了 2.05 兆焦耳(百万焦耳或 MJ)的能量,产生了 3.15 MJ 的能量。自 1960 年代物理学家意识到激光可以引发聚变反应,激光惯性约束聚变 (ICF) 可用于商业发电和用于核武器库存管理的研究以来,LLNL 一直致力于点火。自首次点火以来,NIF 又进行了三次成功的发射,扩大了 ICF 和商业化聚变能的可能性。这些成就为 LLNL 在聚变领域取得技术转让成功奠定了基础。
连续波 (cw) 光子激发电子能量损失和增益光谱 (sEELS 和 sEEGS) 用于对纳米棒天线中光激发局部表面等离子体共振 (LSPR) 模式的近场进行成像。配备纳米操作器和光纤耦合激光二极管的光学传输系统用于同时照射 (扫描) 透射电子显微镜中的等离子体纳米结构。纳米棒长度不断变化,使得 m = 1、2 和 3 LSPR 模式与激光能量共振,并测量这些模式的光激发近场光谱和图像。还研究了各种纳米棒方向以探索延迟效应。光学和电子束模拟用于合理化观察到的模式。如预期的那样,奇数模式在光学上是明亮的,并导致观察到的 sEEG 响应。 m = 2 暗模式不会产生 sEEG 响应,但是,当倾斜到延迟效应起作用时,sEEG 信号就会出现。因此,我们证明了 cw sEEGS 是成像任一奇偶性全套纳米棒等离子体模式近场的有效工具。
125 磅聚能弹头 D (IR) 485 磅 220 千克 H (TV) 466 磅 211 千克 300 磅爆炸破片弹头 E (激光) 645 磅 293 千克 F、F2、G、G2 (IR) 670 磅 304 千克 J、JX、K (TV) 654 磅 297 千克 单轨发射器 LAU-117 135 磅 61 千克跟踪机载或地基激光指示器照射目标时反射的激光能量。它于 1980 年代设计,用于摧毁装甲目标和提供战线以外的近距离空中支援。它的模拟 SAL 导引头提供远程锁定、发射后不管的能力,并包含安全功能,通过长距离飞行和在失去激光指示时停用弹头来避免附带损害它在需要高可靠性和外科手术杀伤力的动态作战行动中仍然非常有效。
本文对直接能源系统对飞机复合结构的影响的研究进行了全面综述,以对该领域的最先进研究和发展产生良好的了解。审查始于在飞机结构中的复合材料的应用,并突出其特定的应用和局限性领域。给出了定向能源系统的概述。讨论了此类别中的一些常用系统,并描述了激光能量系统的工作原理。详细审查了有关受到定向能量系统(尤其是激光系统的效果)的飞机复合结构的实验和数值研究。尤其是,报告了激光系统的一般影响以及相关的损伤机制针对复合结构的一般影响。审查提请人们注意该领域的最新研究和发现,并有望在未来的理论,数值和实验研究中指导工程师/研究人员。©2020中国军械学会。Elsevier B.V.的发布服务代表KEAI Communications Co. Ltd.这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。