时间分辨电子显微镜引起了人们的极大兴趣,可用于研究空间分辨率低于光学衍射极限的超快分子、表面和体积动力学[1–8]。为了实现最佳成像条件,需要精确控制自由电子的发射和传播,这些控制现在也推动了电子-物质相互作用实验[9–14]和显微镜设计[15–18]的进步。对于任何电子显微镜,由于稳定性、相干性以及空间、时间和光谱分辨率之间的权衡,电子发射器和发射机制的选择限制了可实现的成像条件。包含大量电子的短脉冲可用于减少显微镜的曝光时间,并且是生成不可逆动力学的单次图像所必需的,这需要每个脉冲多达 10 9 个电子,但库仑相互作用会展宽大电流脉冲的空间和能量分布,增加像差并降低分辨率[5]。在较长的脉冲中,这些效应会被抑制,大量电子可以在纳秒脉冲包络内传播,同时仍能保持研究相变、反应动力学和蛋白质折叠等过程所需的时间分辨率[19–22]。此外,纳秒脉冲非常适合依赖快速电子门控的仪器,如多通透射电子显微镜[23–25]。这些脉冲可以通过使用光束消隐器及时过滤电子束来产生,也可以通过短激光脉冲触发发射[26]。消隐器通常与连续电子源集成在一起,可以模糊或位移电子束[27]。或者,激光触发需要对电子源进行光学访问,但会引入不同的自由度来控制光发射脉冲的电流、时间持续时间和能量扩展。
时间分辨的电子显微镜在研究以下的空间分辨率下,对超出光学差异极限的空间分辨率的超快分子,表面和散装动力学的研究引起了极大的兴趣[1-8]。要达到最佳的成像条件,需要精确控制自由电子的发射和传播,并且这些控制权现在也可以在电子 - 摩擦相互作用实验[9-14]和显微镜设计方面进步[15-18]。对于任何电子显微镜,电子发射器的选择和发射机制都会限制由于稳定性,相干性和空间,时间和频谱分辨率之间的交易所带来的可实现的成像条件。可以使用大量电子的短脉冲来减少显微镜的暴露时间,并且对于产生不可逆动力学的单拍图像是必不可少的,每脉冲需要多达10 9个电子,但是库仑相互作用范围扩大了空间和能量的高度脉冲,高脉冲的脉冲,增加Aberra-Tions和降低的脉冲[5]。这些效应在较长的脉冲中被压缩,并且大量电子可以在纳秒脉冲包膜内传播,同时仍保持研究过程所需的时间分辨率,包括相变,包括相变,反应动力学,反应动力学和蛋白质折叠[19-22]。此外,纳米脉冲脉冲非常适合依靠电子速度走门控的仪器,例如多通透射电子显微镜[23-25]。这些脉冲可以通过及时用梁覆盖的时间过滤到电子束来产生,也可以通过短激光脉冲触发发射[26]。覆盖物与连续电子源完全集成,并且可以模糊或置换电子束[27]。另外,激光触发需要对电子源的光学访问,但引入了不同的自由度,以控制光脉冲的电流,时间持续时间和能量传播。