Artemis运动试图在2025年将人类返回月球的表面,然后在2030年代将船员任务送往火星。这项工作的关键是太空发射系统(SLS)的开发,这是两阶段的重型火箭,它将猎户座多功能人员车辆推向太空。2022年12月,Artemis I完成了25天的未蛋式测试任务,此前发射了将近4年和数十亿美元的成本增加。NASA的全部Artemis活动成本预计将从2012财年到2025财年达到930亿美元,而SLS计划的成本为26%(238亿美元)。 NASA为Artemis IV开发的太空飞行系统包括网关哨所,人类着陆系统以及SLS火箭的更强大的变体(称为1B块),这将使Artemis运动更加复杂且昂贵。NASA的全部Artemis活动成本预计将从2012财年到2025财年达到930亿美元,而SLS计划的成本为26%(238亿美元)。NASA为Artemis IV开发的太空飞行系统包括网关哨所,人类着陆系统以及SLS火箭的更强大的变体(称为1B块),这将使Artemis运动更加复杂且昂贵。
促进政府与私营企业合作的机构 IN-SPACe 的成立,以及生产运载火箭的 New Space India Limited 的成立标志着一个新时代的到来。此后,航天行业经历了爆炸式增长,初创企业的数量从个位数飙升至近 300 家。在印度空间研究组织 (ISRO) 场地内建立私人发射台的 AgniKul Cosmos 和负责首次私人亚轨道发射的 Skyroot 等重要初创企业正在印度的航天事业中占据一席之地。
为什么这很重要?让我们先看一个火箭的例子。这是 Space-X 的火箭 Falcon9。飞向近地轨道 (LEO) 的最重有效载荷为 22,800 公斤。经过大量努力,发射成本降至 67,000,000 美元。但它仍然很昂贵。每公斤成本为 2900 美元。NASA 会走得更远。它的目标是创造小型、轻量、低成本的任务!张拉整体是一种技术,可以使火箭更小、更轻、更便宜。
美国宇航局和波音公司正在为阿尔特弥斯二号和三号任务建造核心级。每个 SLS 配置都使用带有四个 RS-25 发动机的核心级。第一架 SLS 运载火箭名为 Block 1,可将超过 27 公吨 (t) 或 59,525 磅 (lbs.) 的载荷送往月球以外的轨道。随着 SLS 火箭的不断发展,它将向月球和深空发送更重、更大的有效载荷。
1986 年 8 月发射的 HI 运载火箭的第二级配备了日本第一台液氧液氢发动机 LE-5。该发动机采用的涡轮泵由 IHI 制造。随后的 24 年里,HI 运载火箭被 H-II、H-IIA 和 H-IIB 取代,发动机则被 LE-5A、LE-5B、LE-7 和 LE-7A 取代。IHI 一直与日本宇宙航空研究开发机构 (JAXA) 签订合同,负责所有涡轮泵的设计和制造。JAXA 和制造商目前正联合研究 LE-X 发动机 (1) 的开发,因为他们认识到需要开发能够提供未来可重复使用和载人运载火箭的功能和性能的助推发动机,并提供更高的可靠性以确保国际竞争力。图 1 显示了 LE-X 发动机的外部图。 LE-X 发动机使用液氧和液氢作为推进剂,显著提高了由简单而强大的发动机循环(称为膨胀机排气循环)提供的冲量。(2)图 2 显示了 LE-X 发动机循环。由于在膨胀机排气循环中不使用燃烧气体来驱动发动机的涡轮机,因此发动机输出仅逐渐变化,这意味着发生灾难的可能性极低。鉴于此,膨胀机排气循环被认为天生就适合用于未来的载人运输系统。本文介绍了 LE-X 发动机的基本规格以及 IHI 设计的涡轮泵的技术特点。
随着各个科学领域的技术突破,不同国家的科学家构想出了各种太空通信理念。俄罗斯科学家康斯坦丁·齐奥尔科夫斯基 (1857-1935) 是第一个将太空旅行作为一门科学进行研究的人,并于 1879 年提出了火箭方程,该方程至今仍用于现代火箭的设计。他还首次对人造卫星进行了理论描述,并指出了地球同步轨道的存在。但他没有发现地球同步轨道的任何实际应用。著名的德国科学家和火箭专家赫尔曼·奥伯特于 1923 年提出,轨道火箭的机组人员可以通过镜子发送信号与地球上的偏远地区进行通信。1928 年,奥地利科学家赫尔曼·诺登认为地球静止轨道可能是载人航天器的理想位置。1937 年,俄罗斯科学家提出,电视图像可以通过从航天器上反射来中继。 1942-1943 年间,乔治·O·史密斯在《惊人的科幻小说》中发表了一系列文章,其中介绍了一颗人造行星——金星等边行星,当太阳阻挡直接通信时,它充当金星和地球站之间的中继站。然而,电子工程师和著名科幻小说作家亚瑟·C·克拉克通常被认为是现代卫星通信概念的创始人。
国家海岸 肯尼迪航天中心的发射台见证了许多历史,包括作为所有阿波罗任务的起点。阿波罗是美国宇航局计划的名称,该计划使美国宇航员共进行了 11 次太空飞行并踏上月球。在阿波罗计划期间,发射台上用于清洁火箭的化学品渗入周围的土壤和地下水。这些化学品可能对附近的野生动物有害。卡纳维拉尔国家海岸位于肯尼迪航天中心的最北端,是许多濒危动物的家园,包括海龟。
课程概述 MSc 课程包含 90 ECTS 学分。学生必须完成 8 个核心模块和 4 个选修模块以及一个实习模块。如果核心模块或选修模块与学生之前的学习有很大重叠,则可以不选择。核心模块如下所示。选修模块可以从 UCD 中的任何现有模块中选择,但需与课程主任协商。 核心模块 空间环境(PHYC 40660,5 ECTS,第 1 学期) 模块描述 向学生提供空间环境的概述,分为以下五个部分:真空环境(地球场、太阳-行星连接);中性环境(大气物理学);等离子体环境(电离层、磁层、地磁风暴);辐射环境(捕获辐射带、太阳质子事件、银河宇宙射线);和微流星体/轨道碎片环境(经验模型)。还讨论了与航天器设计相关的其他问题,例如不同卫星轨道的显著特征及其在一系列太空应用(例如地球观测、通信、导航、行星科学、天体物理学和宇宙学)中的用途。主要航天国家现有和计划中的运载火箭的能力、火箭推进的基本原理、振动控制和航天器平台也得到了发展。学习成果完成本课程后,学生应能够:• 比较和对比地球和太空环境;• 确定太空环境对卫星的主要影响;• 为特定的太空应用构建合适的轨道;• 解决相关领域的定量问题;• 将基本物理原理应用于火箭推进和运载火箭的选择• 确定火箭发动机设计和开发的基础• 量化火箭发动机的关键性能参数