什么是计算机视觉?图像分析和计算机视觉的应用。常见的图像和视频格式(非常简短的描述 .jpeg、.tiff、.bmp、.mp4、.avi)、颜色模型:RGB、计算机中的图像表示、图像二值化(基于阈值)、图像特征 - 像素特征、灰度值作为特征、通道的平均像素值、边缘特征(Prewitt 核、Sobel 核)、纹理特征、用例:使用动物数据集进行图像分类(三类 - 狗、猫和熊猫)、带有示例的图像表示、动物数据集的描述、使用 k-NN 或其他 ML 工具进行分类(步骤的简要描述:数据收集、数据表示、将数据集拆分为训练集和测试集、训练分类器、使用 Scikit 学习工具进行评估)。
但是,与视觉图像解释技术相比,这种技术非常简单。这类似于用窗帘遮住照片,然后尝试通过观察灰度或颜色来对主题信息进行分类,该小缝隙会依次扫描整个图像。人类解释者不仅会考虑色调和颜色,还会考虑纹理、形状、大小、图案、位置和关联等属性。IF-THEN 演绎推理过程会得出最终答案。人们曾多次尝试将上述某些元素纳入数字图像分类过程,但只有纹理才能成功处理。即使在这种情况下,也会得出所谓的“纹理图像”,并将其用作逐像素分类的数据层。问题的核心或许在于,所有其他元素都表达了无法通过逐像素观察建模的空间关系。
b'量子图像\xef\xac\x81滤波是对经典图像\xef\xac\x81滤波算法的扩展,主要研究基于量子特性的图像\xef\xac\x81滤波模型。现有的量子图像\xef\xac\x81滤波侧重于噪声检测和噪声抑制,忽略了\xef\xac\x80滤波对图像边界的影响。本文提出了一种新的量子图像\xef\xac\x81滤波算法,实现了K近邻均值\xef\xac\x81滤波任务,在抑制噪声的同时,可以达到边界保持的目的。主要工作包括:提出一种新的用于计算两个非负整数之差绝对值的量子计算模块,从而构建了距离计算模块的量子电路,用于计算邻域像素与中心像素的灰度距离;改进现有的量子排序模块,以距离作为排序条件对邻域像素进行排序,从而构建了K近邻提取模块的量子电路;设计了K近邻均值计算模块的量子电路,用于计算选取的邻域像素的灰度均值;\xef\xac\x81最后,构建了所提量子图像\xef\xac\x81过滤算法的完整量子电路,并进行了图像去噪仿真实验。相关实验指标表明,量子图像K近邻均值\xef\xac\x81滤波算法对图像噪声抑制具有与经典K近邻均值\xef\xac\x80滤波算法相同的效果,但该方法的时间复杂度由经典算法的O 2 2 n降低为O n 2 + q 2 。
假设系统校正系统在几个像素内给出近似配准,我们开发了用于多传感器数据的自动图像配准方法,目标是实现亚像素精度。自动图像配准通常由三个步骤定义:特征提取、特征匹配和数据重采样或融合。我们之前的工作重点是基于使用不同特征的图像相关方法。在本文中,我们研究了不同的特征匹配技术,并提出了五种算法,其中特征是原始灰度或小波类特征,特征匹配基于梯度下降优化、统计稳健匹配和互信息。这些算法在多个多传感器数据集上进行了测试和比较,这些数据集覆盖了 EOS 核心站点之一,即堪萨斯州的 Konza Prairie,来自四个不同的传感器:IKONOS(4m)、Landsat-7/ETM+(30m)、MODIS(500m)和 SeaWIFS(1 000m)。
摘要 - 心律失常是正常心律的不规则变化,有效的手动识别需要大量时间,并且取决于临床医生的经验。本文提出了基于深度学习的新型2D卷积神经网络(CNN)方法,以准确地分类五种不同的心律失常类型。在心电图(ECG)信号上测试了所提出的体系结构的性能,这些信号从MIT-BIH心律失常基准数据库中获取。ECG信号被分割为心跳,每个心跳转换为2D灰度图像,作为CNN结构的输入数据。发现训练结果的97.42%发现,提出的架构的准确性表明,具有转换后的2-D ECG图像的拟议的2-D CNN体系结构可以达到最高的精度,而无需进行任何预处理和特征提取和ECG信号的特征选择阶段。
摘要 — 我们提出了一种新的混合系统,使用多目标遗传算法在灰度图像上自动生成和训练量子启发分类器。我们定义了一个动态适应度函数,以获得最小的电路和对看不见的数据的最高准确度,确保所提出的技术具有通用性和鲁棒性。我们通过惩罚它们的出现来最小化生成的电路在纠缠门数量方面的复杂性。我们使用两种降维方法来减小图像的大小:主成分分析 (PCA),它在个体中编码以进行优化,以及一个小型卷积自动编码器 (CAE)。将这两种方法相互比较并与经典的非线性方法进行比较,以了解它们的行为并确保分类能力归因于量子电路而不是用于降维的预处理技术。
IPX光树脂是专为Nanoscribe Quantum X系统设计的。这个经过业界验证的平台既提供基于2PP的最高精度3D打印,也提供创新的双光子灰度光刻(2GL®),用于2.5D结构化地形的微加工。为了充分利用Quantum X系统的性能、精度和打印速度,IPX系列已针对不同的特征尺寸、质量和工艺进行开发。IPX-S非常适合使用2GL®打印具有微米精度的中观结构,而IPX-Q针对相同规模和类型的结构进行了优化,但使用2PP。IPX-M专为高通量宏观打印而设计,单次打印量高达30立方厘米。IPX-Clear在可见光谱范围内具有出色的透射率,是打印高精度微光学元件的理想选择。
摘要。使用基于特征的混合方法,将基于变换的特征与基于图像的灰度共生矩阵特征相结合。在对脑出血 CT 图像进行分类时,基于特征的组合策略比基于图像特征和基于变换特征的技术表现更好。使用深度学习技术(尤其是长短期记忆 (LSTM))的自然语言处理已成为情绪分析和文本分析等应用中的首选。这项工作提出了一个完全自动化的深度学习系统,用于对放射数据进行分类以诊断颅内出血 (ICH)。长短期记忆 (LSTM) 单元、逻辑函数和 1D 卷积神经网络 (CNN) 构成了建议的自动化深度学习架构。这些组件均使用 12,852 份头部计算机断层扫描 (CT) 放射学报告的大型数据集进行训练和评估。
摘要 — 图像融合是将多个输入图像组合成单个输出图像的过程,该输出图像比任何单个输入图像提供的场景描述更能描述场景。为了获得更好的视觉效果,需要对全色和多光谱图像或真实世界图像进行高分辨率图像融合。图像融合有多种方法,一些图像融合技术包括 IHS、PCA、DWT、拉普拉斯金字塔、梯度金字塔、DCT、SF。在许多应用中已经开发了几种数字图像融合算法。图像融合从给定场景的多个图像中提取信息,以获得最终图像,该图像具有更多适合人类视觉感知的信息,并且更适合额外的视觉处理。它还打算回顾图像融合算法的质量评估指标。在像素级、特征级探索灰度图像融合技术,并回顾每种技术的概念、原理、局限性和优势。
,我们专注于冰片遥感中心收集的雪雷达[1]数据集,作为NASA操作Icebridge的一部分。雪雷达从2-8 GHz运行,并且能够在冰盖较大区域的较高区域的冰层中跟踪冰层。传感器连续几年产生历史降雪堆积的二维灰度,其中水平轴代表沿轨道方向,而垂直轴代表层层深度。像素亮度与返回信号的强度成正比。代表表面层的像素通常由于较高的反射和降雪密度变化而更明亮且更明确,而代表更深层的像素通常由于密度和较低的回流 - 信号强度而较深,更嘈杂。在我们的实验中,我们在2012年使用了从格陵兰岛选定的雪雷达弹射线的雷达数据。在许多区域,每个冰层代表一年一度的等铁[2]。因此,我们可以在相应的一年之前指定的冰层。