MSMC101: Biochemistry credits 3 Unit 1: Basic chemistry for biologists Formation of chemical bonds, molecular orbital (MO) theory and linear combination of atomic orbitals (LCAO), basics of mass spectrometry, molecules, Avogadro number, molarity, chemical reactions, reaction stoichiometry, rates of reaction, rate constants, order of reactions, kinetic versus反应,反应平衡(平衡常数)的热力学对照;光与物质相互作用(光谱,荧光,生物发光,磁磁性和磁磁性,光电子光谱法;化学键(离子,共价,范德尔的力量);电负性,极性,极性,极性; VSE PREACER理论和分子质量,分子型,二型理论,pH PHR -IDIC pHR -IDIC pHR -IDID hybr; acrious per; crious per; crious per; crious per ger sermens ofers ybres ybres; acres ofersizations;水,弱酸和碱基的离子产物,结合酸基料,缓冲和缓冲作用等;化学热力学 - 内部能量,热量和温度,焓(键 - 焓和反应焓),gibbs gibbs aTP驱动的反应的自由能力烯烃和炔烃,官能团,氨基酸,蛋白质,多肽骨架中的旋转自由(Ramachandran图)
批准 0.075 毫克口服炔诺孕酮片(以下简称炔诺孕酮片)作为非处方每日避孕药是恰当的。提高消费者预防意外怀孕的能力(以及随之而来的医疗、经济和社会危害)的潜在好处超过了该产品在非处方环境中的潜在风险。虽然申请人提交的支持炔诺孕酮片非处方状态适当的数据存在一些局限性,但申请人的项目和其他来源的数据总和是支持的。罕见病、儿科、泌尿科和生殖医学办公室副主任 Christine Nguyen 博士同意批准决定,并签署了一份联合审查报告(主要作者 Anandi Kotak 博士)。
应变促进炔烃-叠氮化物环加成 (SPAAC) 已成为生物正交结合和表面固定中不可或缺的工具。虽然许多研究都集中于增强环辛炔的反应性,但是仍然缺少一种无需任何复杂设施即可评估环辛炔-叠氮化物固定化结合效率的简便方法。在本研究中,与荧光团或生物素部分连接的二苯并环辛炔/双环壬炔 (DBCO/BCN) 的不同衍生物被图案化在超低污染聚合物刷上,这可以在不进行任何先前的封闭步骤的情况下避免非特异性蛋白质污染。聚合物刷由防污底部嵌段和叠氮化物封端的顶部嵌段组成。使用普通荧光显微镜对通过微通道悬臂点样 ( μ CS) 点样的有序阵列进行结合效率的评估。两种环辛炔均通过 μ CS 与含叠氮化物的二嵌段聚合物刷表现出可靠的结合性能,但根据蛋白质结合试验,DBCO 显示出更高的分子固定表面密度。这项工作为选择合适的环辛炔与叠氮化物偶联提供了参考,并可用于设计用于分析物检测、细胞捕获和其他生物应用的生物传感器或生物平台。
基于石墨炔 (GY) 和石墨炔 (GDY) 的单层代表了下一代二维富碳材料,其可调结构和性能超越石墨烯。然而,检测原子级厚度的 GY/GDY 类似物中的能带形成一直具有挑战性,因为该系统必须同时满足长程有序和原子精度。本研究报告了在表面合成的金属化 Ag-GDY 薄片中形成具有介观(≈ 1 μ m)规律性的能带的直接证据。采用扫描隧道和角度分辨光电子光谱,分别观察到费米能级以上实空间电子态的能量相关跃迁和价带的形成。此外,密度泛函理论 (DFT) 计算证实了这些观察结果,并揭示了蜂窝晶格上双重简并的前沿分子轨道产生接近费米能级的平坦、狄拉克和 Kagome 能带。 DFT 建模还表明原始薄片材料具有固有带隙,该带隙保留在具有 h-BN 的双层中,而吸附诱导的带隙内电子态在 Ag-GDY 装饰银的 (111) 面的合成平台上演变。这些结果说明了通过原子精确的二维碳材料中的分子轨道和晶格对称性设计新型能带结构的巨大潜力。
目前的药物治疗由于毒性、低疗效和耐药性而失败;利什曼病是全球面临的重大健康挑战,迫切需要新的经过验证的药物靶点。受天然查尔酮 2',6'-二羟基-4'-甲氧基查尔酮 (DMC) 活性的启发,硝基类似物 3-硝基-2',4',6'-三甲氧基查尔酮 (NAT22, 1c) 被确定为强效的广谱抗利什曼原虫药物先导。结构修饰提供了一种含炔烃的化学探针,该探针标记了寄生虫内的一种蛋白质,该蛋白质被证实为胞浆锥虫过氧化物酶 (cTXNPx)。至关重要的是,在前鞭毛体和巨噬细胞内无鞭毛体生命形式中都观察到了标记,没有证据表明宿主巨噬细胞具有毒性。查尔酮在寄生虫中孵育会导致 ROS 积累和寄生虫死亡。通过 CRISPR-Cas9 删除 cTXNPx 会显著影响寄生虫表型,并降低查尔酮类似物的抗利什曼原虫活性。与计算机模拟 cTXNPx 同源性模型的分子对接研究表明,查尔酮能够结合假定的活性位点,阻碍其接近关键的半胱氨酸残基。总之,这项研究将 cTXNPx 确定为抗利什曼原虫查尔酮的重要靶点。
摘要 使用紧凑而坚固的宽带微电子 THz 波谱仪在 220-330 GHz 频率范围内进行旋转吸收光谱法,演示了对卤代烃的气体传感。在工业环境中,对卤代烃进行监测是必要的,因为这些化学物质具有毒性、挥发性和反应性,对人类健康和环境构成威胁。在 297 K 和 0.25 至 16 Torr 压力下表征了纯氯甲烷、二氯甲烷、氯仿、碘甲烷和二溴甲烷的吸收光谱。光谱显示了目标卤代烃在 220-330 GHz 频率范围内独特的旋转指纹,并展示了它们在气体传感应用中选择性定量检测的潜力,纯气体的最小检测量为 10 12 –10 13 分子/cm 3 量级,稀释气体的最小检测量为 10-100 ppm 量级,1 个大气压,1 米光程。该研究进一步证明了全电子微型太赫兹波气体传感器的潜力。
摘要。In order to explore the effects of different remediation methods on the degradation rate of total petroleum hydrocarbons and enzyme activity in oil-contaminated soil, a study was conducted using six different treatments, including adding rhamnolipid (S), organic fertilizer (F), degradation bacteria (J), rhamnolipid + degrading bacteria (SJ), organic fertilizer + rhamnolipid(SF)和有机肥料 +降解细菌(FJ),以补充油污染的土壤。该研究检查了在不同的培养时间,研究了总石油烃的降解速率的变化以及四种土壤酶(尿素酶,过氧化物酶,脱氢酶和脂肪酶)的活性。结果表明,在修复60天后,所有处理都提高了被污染的土壤中总石油烃的降解率。通过FJ处理获得了最佳结果,降解率为31.72%。所有治疗中的酶活性都显着高于不同培养期间对照的酶活性。统计分析表明,尿素酶,过氧化物酶和脂肪酶的活性与受污染的土壤中总石油烃的残留率显着负相关。脱氢酶的活性与被污染的土壤中总石油烃的残留率高度显着相关。关键词:总石油烃,尿素酶,脱氢酶,过氧化物酶,脂肪酶
推荐引用 推荐引用 Wei, Z., Wei, Y., Liu, Y., Niu, S., Xu, Y., Park, J., & Wang, J. (2024). 生物炭基材料作为石油烃污染土壤和水体的修复策略:性能、机制和环境影响。环境科学杂志 (中国), 138, 350-372。https://doi.org/10.1016/ j.jes.2023.04.008
a 张振浩博士、Nazarii Sabat 博士、Angela Marinetti 博士、Xavier Guinchard 博士、巴黎萨克雷大学、法国国家科学研究中心、自然化学研究所、UPR 2301, 91198、Gif-sur-Yvette、法国。电子邮件:angela.marinetti@cnrs.fr; xavier.guinchard@cnrs.fr b 张振浩博士、Gilles Frison 博士 LCM、CNRS、巴黎综合理工学院、巴黎综合理工学院、91128 Palaiseau、法国。 c Dr Gilles Frison 索邦大学,法国国家科学研究院,理论化学实验室,75005 巴黎,法国 CPA-Phos 系列新型手性磷酸官能化膦的金(I)配合物可使醛、羟胺和环状炔烯酮之间发生对映选择性多组分反应,生成 3,4-二氢-1H-呋喃并[3,4-d][1,2]恶嗪。这是金(I)催化下高度对映选择性多组分反应的第一个例子。反应在低催化剂负载下进行,产率高,总非对映选择性和对映体过量高达 99%。可应用无银条件。该方法适用范围非常广泛,既适用于脂肪族和芳香族醛和羟胺,也适用于各种环状炔烯酮,以及炔烯酮衍生的肟。据报道,DFT 计算启发了对映体控制途径。
在先前的研究中,我们设计了一个库的库,其中具有点击式化合物启用官能团的顺序官能化,即叠氮化物(go-n 3),碱(go)和叠氮化股(go)和叠氮化股(C 2 GO)(c 2 go),如方案1所示。[9-13]叠氮化物修饰显着增加了水接触角GO-N 3和C 2 GO,而炔烃的修饰并未改变接触角(图1)。更有趣的是,我们发现这种修饰导致血清蛋白在GO上结合的顺序降低(又称A.强限制的硬蛋白电晕,以下称为HC)。GO的HC从1.4 mg(GO)降低到1.1 mg(GO,降低22%),0.9 mg(GO-N 3,35%HC还原)和0.8 mg(C 2 GO,43%HC降低)。这导致吞噬J774细胞的细胞摄取显着增加,与GO蛋白质还原的线性相反关系(r 2 = 0.99634)。由于蛋白质涂料的减少而引起的较高的吸收也导致了较高的细胞毒性,而无效的GO也会产生较高的细胞毒性。[10-12]另一方面,众所周知,高蛋白涂层可以防止其细胞相互作用和非吞噬A549细胞的内在化,从而降低了细胞毒性[14],这是由于GO和A549细胞膜之间的物理相互作用降低而导致的。[15]这项研究使用已知的J774和A549细胞模型进一步研究了我们的研究,并假设在两个模型细胞中,生物纳米相互作用将有所不同。我们假设生物纳米相互作用的对比对于进行表面化学修饰将很敏感,并旨在使用无标签方法检测和分析生化差异,例如基于同步辐射的基于同步辐射的IR-Transans-Transans-Transansform-Transtrans-Transtrans-Transeform-Transeform-Transeform ir scirotectroscopopicy(SR-FTIR(SR-FTIR),这些方法可以使用pace Armination(PCA)进行可视化的分析(PCA)。