摘要:上一届政府间气候变化专门委员会 (IPPC) 评估报告强调,减少二氧化碳排放的行动迄今为止未能有效实现 1.5 C 限制,需要采取激进措施。废弃生物质的升级、电力到 X 范式和氢等创新能源载体等解决方案可以为向低碳能源系统的过渡做出有效贡献。在此背景下,本研究的目的是通过研究厌氧消化与热化学转化过程的创新整合优势来改进湿残余生物质的氢气生产过程。此外,该解决方案集成到由电网和光伏电站 (PV) 组成的混合电源中,并由热能存储 (TES) 系统提供支持。通过 Simulink/Simscape 模型仔细评估了工厂的性能及其输入能源需求(将电力需求分为光伏系统和国家电网)。初步评估显示,该工厂的氢气产量表现良好,达到 5.37% kg H2 /kg 生物质,远高于单一工艺的典型值(约 3%)。这一发现表明生物和热化学生物质增值路线之间存在良好的协同作用。此外,热能存储显著提高了转化工厂的独立性,几乎将电网的能源需求减少了一半。
摘要。我们通过引入众所周知的经典方法的量子扩展,建立了关于量子 Wasserstein 距离的运输成本不等式 (TCI):首先,我们推广 Do-brushin 唯一性条件,以证明一维交换汉密尔顿量的吉布斯态在任何正温度下都满足 TCI,并提供将此第一个结果扩展到非交换汉密尔顿量的条件。接下来,使用 Ollivier 粗 Ricci 曲率的非交换版本,我们证明任意超图 H = ( V, E ) 上的交换汉密尔顿量的高温吉布斯态满足具有常数缩放的 TCI,即 O ( | V | )。第三,我们论证了通过将 TCI 与最近建立的修正对数 Sobolev 不等式联系起来可以扩大 TCI 成立的温度范围。第四,我们证明,在固定点局部不可区分性条件似乎较弱的情况下,该不等式对于正则格上任意可逆局部量子马尔可夫半群的固定点仍然成立,尽管常数略有恶化。最后,我们使用我们的框架证明了准局部可观测量的特征值分布的高斯集中界,并论证了 TCI 在证明正则和微正则集合的等价性以及对弱本征态热化假设的指数改进方面的实用性。
我们讨论了在二维 (2D) 大 N c 规范理论中,在光前沿量化狄拉克夸克,快自由度和慢自由度之间的量子纠缠。利用 ' t Hooft 波函数,我们为动量分数 x 空间中的某个间隔构建了约化密度矩阵,并根据结构函数计算其冯诺依曼熵,该结构函数由介子(一般为强子)上的深非弹性散射测量。我们发现熵受面积定律的约束,具有对数发散,与介子的速度成正比。纠缠熵随速度的演化由累积单重态部分子分布函数 (PDF) 确定,并从上方以 Kolmogorov-Sinai 熵 1 为界。在低 x 时,纠缠表现出渐近展开,类似于 Regge 极限中的前向介子-介子散射振幅。部分子 x 中每单位快速度的纠缠熵的演化测量了介子单重态 PDF。沿单个介子 Regge 轨迹重合的纠缠熵呈弦状。我们认为,将其扩展到多介子状态可模拟大型 2D“原子核”上的深度非弹性散射。结果是纠缠熵随快速度的变化率很大,这与当前最大量子信息流的 Bekenstein-Bremermann 边界相匹配。这种机制可能是当前重离子对撞机中报告的大量熵沉积和快速热化的起源,并且可能扩展到未来的电子离子对撞机。
量子多体模拟提供了一种简单的方法,可以理解基本物理学并与量子信息应用联系。然而,从实现的希尔伯特空间规模呈指数增长的情况下,实际空间中的几个体探针的表征通常是不可能解决的,无法解决诸如量子批判行为和多体临界行为(MBL)等较高尺寸的具有挑战性的问题。在这里,我们实际上在超导量子处理器上采用了新的范式,从Fock空间视图中探索了此类难以捉摸的问题:将多体系统映射到非常规的Anderson模型上,以多体状态的complex Fock空间网络。通过观察在Fock空间中传播的波数据包和统计奇异合奏的出现,我们揭示了一幅新的图片,以表征代表性的多种体型:热化,定位和疤痕。此外,我们观察到了异常增强的波数据包宽度的量子临界状态,并从最大波数据包流量中推断出一个临界点,该临界点为二维MBL MBL过渡提供了限制系统的支持。我们的作品揭示了探索Fock空间中多体物理学的新观点,展示了其在诸如批判性和维度等有争议的MBL方面的实际应用。此外,整个协议是通用且可扩展的,为在未来的较大量子设备上最终解决了更广泛的有争议的多体问题的方式铺平了道路。
我们研究了一个均匀弯曲的量子3 d空间区域的多部分纠缠,它是根据在循环量子重力的框架内定义在具有非微不足道SU(2)固体图的图上定义的旋转网络的。该区域中固有曲率的存在被闭合(拓扑)缺陷,与附着在图形顶点的TAG -SPIN相关的缺陷。对于此类状态,我们将大量到边界的映射概括为在扩展边界空间中包括标签空间:在一般纠缠的边界表面和固有的曲率自由度之间共享批量信息。我们在由两个(互补)边界和散装标签组组成的三方系统上的量子区域建模。通过复制技术,我们可以计算较大的旋转状态下,还差的边界对数负效率的典型值,被描述为开放量子系统。我们发现了三个纠缠状态,具体取决于标签数(弯曲曲线)与边界处的双面表面面积之间的比率。这些由三方随机状态的广义页面曲线很好地描述。尤其是,在曲率较小的情况下,我们找到了负面的面积缩放行为,而对于较大的曲率,消极性消失,表明边界有效的热化。值得注意的是,混合边界状态的PPT特征对网络的有效拓扑的变化做出了反应,两个边界子区域脱离了连接。
实习项目 2025 珍妮·库尔特 研究远非平衡态电子-声子流体动力学输运 在某些条件下,某些材料中的热量和电荷输运可以用流体动力学方程描述。近期研究将电子的稳态流体动力学方程[1]与声子的粘性热方程统一起来,得到了一组更通用的“粘性热电方程”,描述了电子和声子协同产生流体动力学效应的状态。VTE是在接近平衡态的稳态下推导出来的。本项目将VTE扩展到远非平衡态输运现象,这些现象出现在i)导致响应延迟的高频扰动,以及ii)驱动弹道输运和流体动力学输运耦合的空间不均匀性。本项目将涉及理论开发以及扩展Phoebe程序包[3]的计算工作。[1] Gurzhi. Sov. Phys. Uspekhi 11, 255 (1968) [2] Simoncelli, Marzari, Cepellotti, PRX 10, (2020)。[3] https://github.com/phoebe-team/phoebe Olivier Gauthé 有限温度下的多体局部化 多体局部化 (MBL) 是一种有趣的现象,出现在强无序的相互作用量子系统中 [1]。这样的系统在淬火后不会热化,并且会在很长一段时间内保留初始信息。这种现象可以在具有随机局部场的一维自旋链中观察到。张量网络是一种成熟的方法,用于模拟依赖于高维数据低秩近似的强关联系统。使用
转化为电能,而很大一部分则被反射或通过热化而损失。这些废热限制了光伏系统的效率和寿命。因此,需要进一步努力来提高其寿命和效率,降低成本和能源浪费。光伏/热能混合 (PV/T) 技术可以通过有效控制光伏电池温度和提供可再生热电联产 (CHP) 将整体效率提高 80% 以上。最近的研究表明,将相变材料 (PCM) 作为被动冷却或储热介质集成到 PV/T 系统中可以提高系统性能。然而,有必要开发 PCM 中的热响应和传热以及它们与 PV/T 系统的最佳集成。该项目旨在设计和开发原型 PV/T 系统,将具有增强光热性能的复合 PCM 集成为储热和被动冷却。该项目将涉及能源材料研究,以使用碳基和金属氧化物基添加剂提高 PCM 的光热转换效率。将评估 PV/T 系统的不同配置概念,例如空气、流体和热管,以提出一种新的概念高性能 PV/T 系统。这种高性能 PV/T 将促进太阳能的更广泛利用,支持实现“净零”目标,实现供暖脱碳。该项目的创新潜力可以直接促进两个可持续发展目标:气候行动和可负担的清洁能源,并且拟议项目符合负责任创新的原则,以合乎道德和负责任的方式对社会产生积极影响。参考文献:
引言:传统上,量子多体系统的研究集中于预测少体可观测量,如局部相关函数。最近,受量子热化和混沌[1]、量子系统的经典模拟[2]和量子引力[3]中基本问题的启发,物理学家们转向了一项互补的研究:量化多体动力学本身的复杂性。这一研究的核心是量子信息扰乱的概念;在几乎所有相互作用的多体量子系统中,最初在局部算子中编码的信息会逐渐变得高度非局部[4-6]。值得注意的是,最近的实验进展使得直接测量扰乱成为可能——这项任务最常见的是利用时间倒退演化[7-14],但也可以使用系统的多个副本[15-17]或随机测量[18,19]来执行。在这样的系统中,扰乱动力学、外部退相干和实验噪声之间的相互作用引发了一个基本问题:开放量子系统中量子信息扰乱的本质是什么[13,16,20 – 31]?在本文中,我们引入了一个基于算子尺寸分布的通用框架[32 – 35],用于捕捉局部误差对扰乱动力学的影响。具体来说,我们推测混沌多体系统中误差的传播从根本上受时间演化算子的尺寸分布控制,与微观误差机制无关。我们的框架立即为 Loschmidt 回声[36 – 38] 和非时序相关 (OTOC) 函数 [39,40] 提供了预测。具体来说,我们预测 Loschmidt 回声的衰减(用于测量与时间向后演化相关的保真度)发生在
JWST最近测量了K2-18b的传输频谱,K2-18b是一种可居住区的近后末期,检测到其大气中的CH 4和CO 2。发现论文认为,数据最好用可居住的“ Hycean”世界来解释,该世界由相对较薄的h 2域中的大气层组成,上面覆盖了液态水海洋。在这里,我们使用光化学和气候模型将K2-18B模拟为Hycean Planet,又是富含气体的迷你新闻,没有确定的表面。我们发现,在这种大气中,光化学仅在<1零售价<1零售价<1个零食的CH 4中很难与JWST观察结果相吻合,而数据表明大约有1%的气体存在。在Hycean K2-18B上维持%-Level Ch 4可能需要存在甲烷生物圈,类似于地球上的微生物寿命,即30亿年前。另一方面,我们预测具有100×太阳金属性的富含气体的微型纽蛋白应具有4%CH 4和接近0.1%CO 2,这与JWST数据兼容。CH 4和CO 2在深层大气中热化产生,并将其混合至对传输光谱敏感的低压。该模型预测H 2 O,NH 3和CO丰度与非检测广泛一致。鉴于由于H 2的逃脱和深度的潜在超临界性,在Hycean World上保持稳定的温带气候的额外障碍,由于其相对简单性,我们赞成微型新闻的解释,并且因为它不需要生物圈或其他未知来源来解释数据。
近十年来,原子、分子和光学平台的实验进展激发了人们对许多长程相互作用粒子的量子相干动力学的广泛兴趣。这些系统突出的集体特性使得新的非平衡现象成为可能,而这些现象在具有局域相互作用的传统量子系统中是没有的。该领域的许多理论工作要么集中于可变范围相互作用尾部对局域相互作用物理的影响,要么依赖于基于全对全无限范围相互作用的相反极限的平均场类描述。在本报告中,我们系统而有机地回顾了该领域的最新进展。使用典型的无无序相互作用量子自旋晶格,我们的报告取决于一种多功能的理论形式,它介于少体平均场物理和准局域相互作用的多体物理之间。这种形式使我们能够将这两种机制联系起来,既提供了正式的定量工具,也提供了基本的物理直觉。我们利用这个统一的框架来回顾过去十年的几项发现,包括量子关联的特殊非弹道扩散、纠缠动力学的反直觉减速、热化和平衡的抑制、穿越临界状态时缺陷的异常缩放、动态相变以及通过周期性驱动稳定的真正非平衡相。本报告的风格属于教学方面,这使得没有相关经验的读者也可以理解。© 2024 作者。由 Elsevier BV 出版 这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。