我们在现象学上制定并在实验上观察到通过人工倾斜多层(ATML)中的热电流重新定位增强了绝热的热电转换。通过交替堆叠具有不同导电性的两种材料,并相对于纵向温度梯度旋转其多层结构,诱导导热性张量中的非分子分量。这种非对角线热传导(ODTC)在绝热条件下产生有限的横向温度梯度,并在绝热条件下产生了seebeck效应诱导的热电器,该温度是由异热横向热电器上置于由外diagonal驱动的热量热电器上的。在这项研究中,我们计算和观察包括热电CO 2 MNGA Heusler合金和BI 2-A SB A TE 3化合物的ATML中的二维温度分布以及所得的横向热电器。通过将倾斜角从0°更改为90°,横向温度梯度显然出现在中间角度,横向热电图在CO 2 MNGA/BI 0.2 MNGA/BI 0.2 SB 1.8 TE 3 te 3 te 3 te的ATML中以45°的倾斜度为45°的ATML,均来自45°的贡献。这种从ODTC得出的混合动作导致横向热电转化率最大降低效率的显着差异从等热极限的3.1%到绝热极限的8.1%。
引入和分析了专为低温操作设计的光子热放大器(PHA)。该设备包括两个通过无损线连接的Anderson绝缘体储层,使它们可以通过光子模式交换热量。该配置可实现负差分电导(NDTC),可以利用以扩大热信号。为了实现这一目标,我们将一个储层保持在高温下,作为热晶体管的源端子。同时在另一个中,我们建立了与金属储层的隧道接触,该储层起着栅极和排水端的功能。使用这种布置,可以通过调节栅极温度来控制源和排水之间的热通量交换。我们提出了两种不同的参数选择,它们产生不同的性能:第一个强调调节源排水热电流,而第二个则重点是较冷的安德森绝缘子的温度调节。最后,我们提出了一个潜在的设计变化,其中所有电子储层都仅通过光子模式进行热连接,从而允许远处元素之间的相互作用。PHA的建议解决了MK范围内的热晶体管和放大器的缺乏,同时与电路量子电动力学的丰富工具箱兼容。它可以适应各种应用,包括在柯文温度下的传感和开发热电路和控制装置,这与量子技术有关。