摘要:激光熔覆提供了先进的表面处理能力,可提高部件的性能。然而,其有效性经常受到熔覆过程中热裂纹形成的挑战。本研究重点研究了通过激光熔覆应用于 304LN 不锈钢的新型钴基合金 (K688) 涂层中热裂纹的形成机理和抑制方法。结果表明,热裂纹的形成受液膜稳定性、应力集中和沉淀相的影响。大多数热裂纹出现在 25 ◦ –45 ◦ 大角度晶界 (HAGB) 处,因为这些晶界具有高能量,可稳定液膜。与高斯光束相比,平顶光束可产生具有较低温度梯度和更缓和的流体流动的熔池,从而降低涂层内的热应力和裂纹敏感的大角度晶界 (S-HAGB) 的比例。最后,通过使用平顶激光束优化工艺参数,可显著抑制裂纹形成。这些发现为实现异种材料的高质量激光熔覆提供了技术基础,为优化工艺参数以防止热裂纹的形成提供了见解。
石墨烯能够通过提高水合水泥的热扩散性来预防早期热裂纹的能力,这与预铸造的混凝土产生特别相关,因为混凝土块在高温下在高温下烘烤在高温下,并且较大的块会导致冷却时导致裂纹的温度梯度。通过专注于这些相对较高的价格混凝土产品,不仅将石墨烯用作增强填充剂,而且还将其提供用于解决行业挑战或目标的特殊财产增强功能,石墨烯可以在各种水泥和混凝土市场领域中取得成功。
摘要。随着技术的开发,传统锂电池中的石墨材料由于人们相对较低的特定能力,有限的充电和排放率以及安全性差而无法满足需求。硅具有很高的理论特异性能力,远远超过了传统的石墨负电极材料,使硅纳米颗粒成为提高锂离子电池能量密度的理想选择。在本文中,我们首先介绍硅纳米颗粒阳极及其制备方法:机械球铣削和热裂纹,并在其中介绍了粘合剂的应用。其次,引入了硅纳米线阳极及其制备的化学沉积方法,并引入了高性能的硅纳米线锂电池。第三,引入了硅薄膜阳极和两种复合膜的制备。最后,总结了三种类型的硅纳米阳极。本文对基于硅的锂离子电池的未来研究具有参考意义。
采用定向能量沉积技术在用于硬面堆焊的热作工具钢基材上沉积了具有不同层数的冷作工具钢。本研究涉及了覆层工具钢中的缺陷和微观结构。在沉积区发现了包括孔隙和裂纹在内的缺陷,其数量随着沉积高度或层数的增加而增加。大的不规则孔隙主要位于沉积层的下部区域。此类孔隙的形成归因于合金元素在孔隙表面的偏析和热量输入不足。非平衡共晶微观结构是孔隙邻近区域的特征。另一方面,开裂往往发生在沉积层的上部。确定了导致开裂的两个重要因素。第一个是微观结构梯度,当从底部移动到顶部沉积层时,微观结构梯度从细胞状树枝状晶变为柱状树枝状晶。其次,根据Thermocalc软件的模拟,沉积的冷作工具钢表现出相对较大的凝固温度范围,从而对热裂纹具有很高的敏感性。
实施电弧定向能量沉积需要开发新型、工艺适应性强的高性能铝合金。然而,传统的高强度合金难以加工,因为它们容易产生热裂纹。基于 Al-Mg-Zn 的交叉合金结合了良好的可加工性和人工时效后的良好机械性能。在这里,我们提出了一种使用 Ag 微合金化进一步改善 Al-Mg-Zn 交叉合金机械性能的努力。在样品中没有观察到裂纹和少量孔隙。微观结构以细小和球状晶粒为主,晶粒尺寸为 26.6 l m。晶粒结构基本上没有纹理,包含细小的微观偏析区,偏析缝厚度为 3-5 微米。经热处理后,这些微观偏析区溶解,并形成 T 相沉淀物,这通过衍射实验得到澄清。该沉淀反应导致显微硬度为 155 HV0.1,屈服强度分别为 391.3 MPa 和 418.6 MPa,极限拉伸强度分别为 452.7 MPa 和 529.4 MPa,横向和纵向断裂应变分别为 3.4% 和 4.4%。所得结果表明,可以使用新开发的铝交叉合金通过电弧直接能量沉积制造高负荷结构。
功能梯度材料 (FGM) 的概念是为了开发高性能耐热材料而提出的,其中耐热陶瓷与金属混合[1]。FGM 是一类先进的异质材料,其成分和性能表现出可控的空间变化,从而导致其性能 (热/电导率、耐腐蚀、机械、生物化学等) 逐渐变化。FGM 背后的主要思想包括一种不能满足所有设计要求的材料和一种适用于特定位置和操作条件的不同材料。由于这种协同效应,FGM 可应用于不同领域,例如生物医学、汽车和航空航天、电子、光学、核应用、反应堆部件和能量转换 [2]。FGM 的特点是材料之间可以逐渐转变,也可以不连续/突然转变。对于突然转变(直接界面),部件会承受巨大的应力和化学不相容性。相反,连续/渐进的转变可以最大限度地减少这些问题,并改善界面处的机械性能 [3、4]。基于电弧的定向能量沉积(DED-arc),通常称为线材和电弧增材制造(WAAM),是制造 FGM 的一种很有价值的制造技术。使用配备多个独立线材送料器的机器可以轻松进行其生产,从而可以创建在多个方向上具有成分和性能梯度的部件。同时使用两根线材被称为双线和电弧增材制造 (T-WAAM)。尽管如此,在同一熔池中结合两种材料会带来令人困惑的挑战,包括可能形成不良的金属间化合物,这会降低可焊性/可打印性(例如,由于形成热裂纹和高硬度区域)并导致过早失效 [2]。此外,热膨胀系数不匹配、熔化温度差异以及溶解度不足都会导致开裂和脆化 [5]。每根焊丝不同的热物理性质也意味着确保零件无缺陷所需工艺参数存在显著差异。316L 不锈钢与 Inconel 625 的 FGM 用于化工厂、石油天然气和核工业应用。特别是在堆焊管道和阀门中,零件插入两种不同的环境中,需要不同的耐腐蚀和耐磨性(内部接触腐蚀性流体,例如含有高 CO2 和 H2S 的原油,外部接触大气 [6e8])。尽管 Inconel 625 的这些性能更胜一筹,但在结构件的关键区域用不锈钢替代 Inconel 可以降低相关部件成本。两种合金的基质均为单个面心立方 (FCC) 相 (g),主要合金元素为 Fe、Cr 和 Ni。根据工艺和制造策略,可能会出现一些问题,其中热裂纹尤为普遍。Shah 等人 [9] 使用激光定向能量沉积 (L-DED) 分析了工艺参数对 316 不锈钢到 Inconel 718 FGM 制造的影响。作者没有证明由激光诱导裂纹的证据
定向能量沉积是一种 3D 打印方法,它使用聚焦能量源(例如等离子弧、激光或电子束)来熔化材料,然后通过喷嘴同时沉积。与其他增材制造工艺一样,该技术用于向现有组件添加材料、进行维修或制造新部件。直接能量沉积增材制造技术已引起业界的广泛关注,用于制造/维修在用组件。然而,该过程经历了复杂的熔化和凝固动力学,对有效控制晶粒结构提出了挑战,从而导致潜在的结构故障。这项研究旨在调查使用高强度超声波控制凝固过程和扩大系统规模以制造大型组件的潜力。从可行性研究中可以看出,超声波可以帮助细化晶粒结构,还可以减少孔隙率等异常。在可行性研究中,考虑了一系列频率和功率配置,以简化系统的扩大。根据所研究的超声波配置,最终确定在放大生产中使用 40 kHz 60 W 配置。还注意到,由于凝固过程中的成分过冷降低了熔池主体的温度梯度,因此超声波辅助增材制造中的热裂纹减少了。此外,还注意到晶粒取向垂直于振动方向,这有可能用于根据需要控制晶粒取向。这一新发现为开发超声波辅助增材制造工艺提供了新的应用。
w Uat%ici 这是确定碳当量公式预测低碳微合金钢可焊性的有效性的最终报告。表征了一系列钢的 HAZ(HSLA 80-130、HY 130、DQ 和 AC 类型),发现 Yurioka 公式在预测 H&Z 硬度方面最准确。还发现 CE1 碳当量公式可以最准确地预测淬硬性,但铜的影响在 0.5% 以上不是线性的。通过植入、Battelle 和 UT-Mod 氢敏感性测试在两个氢水平下评估氢敏感性。植入测试中的下临界应力。用于定义所评估钢的临界预热温度。HSLA 80 型材料可能需要预热。在有氢存在的高度约束条件下预热 15°F。就氢开裂敏感性而言,HSLA 130 优于 HY 130。高强度钢可按防止开裂所需的预热增加的顺序排列:HSLA 1OO--HSLA 130--DQ 125--HY 1、DQ 80 和 AC-50 钢在高氢水平 (20ppm) 和环境温度预热下测试反应良好。在 HSL+、DQ 和 AC 钢的热影响区中发现软区,其与焊接热输入有关。铜轴承 HSLA 钢中的软区可以通过 PWHT 消除。一项调查研究表明,HSLA 80 钢在 PWHT/再热裂纹方面与 A 710 钢种类似,并且 KAZ 韧性下降也与 A 710 钢种类似。.,,.. ..
为了提高对氯化物诱导的局部腐蚀的耐药性,通过将钼含量从3 wt .-%增加到3 wt .-%的Alloy Uns N08825中的Alloy n08825中的3 wt .-%左右的825 ctp中,通过将钼含量从大约3 wt .-%增加到3 wt。通过增加钼含量,pren(由公式(1)给出的匹配抗性等效数)从33增加到42,这给出了提高耐腐蚀性的首先指示。通过在合金N08825中从30°C(86°F)2的临界点温度(CPT)升高至合金825 CTP的合金3-5(131°F)3-5的临界点温度(CPT)从30°C(86°F)2中升高,通过实验证实了改善的耐腐蚀性。pren =%cr + 3.3 x%mo + 16 x%n(1)此外,众所周知,合金N08825在焊接过程中非常容易易于热开裂,这可能发生在热影响区(HAZ)或焊接金属本身中,代表了跨间的故障模式。为了评估材料的热开裂敏感性,固化温度范围(固体二液值差值,ΔT)通常用作首次评估。较高的ΔT导致沿晶界和跨齿状区域分布的残留液相,从而导致冷却收缩过程中晶界延展性的损失,因此可以进行热开裂。6,7在实验上,可以通过改进的涂层(MVT)测试来评估热破裂的敏感性。通常将钛和niobium添加到合金中,以稳定碳并防止在可能导致晶间腐蚀的晶界处的碳化物降水。MVT测试被用作“通用”焊接性测试,旨在独立控制焊接参数和机械负载,该测试允许通过热裂缝数量和焊接样品的热裂纹长度评估和比较材料。在另一侧,从焊接的角度来看,据众所周知,钛对材料的可焊性具有有效的影响,7,但有关钛的这一方面的信息有限。Shankar等人。沿ti稳定的奥氏体不锈钢焊缝的裂缝和跨齿状区域验证了一般的高钛富集。认为,较高的钛含量会导致对晶界的种族隔离增加,这导致在这些地区形成更有害的次级相,后来可能有助于形成裂纹。此外,已知钛和其他分区元素在凝固过程中丰富了谷物和亚晶界。将这些元素分配到边界区域时,可以显着降低这些位点的有效凝固温度范围。8钛作为合金元素的另一个缺陷是其在电弧焊接过程中无法预测的氧化行为,这可能导致间质钛的消耗 - 从而降低了其稳定效果 - 与焊接金属中钛含量的发生结合。由于最近开发的合金825 CTP可以通过高级辅助冶金生产工艺实现非常低的碳含量,因此不需要钛的添加钛的目的