热解气相色谱-质谱法 (Py-GC-MS) 在环境分析中具有巨大潜力。该技术主要用于对由于尺寸较大而无法通过液相色谱或气相色谱进行表征的大分子进行化学鉴定。通过热解(受控热降解),这些大分子被分解成更简单的分子,可以通过气相色谱分离并通过质谱检测。该技术传统上用于环境样品中有机物和腐殖质、污染物、木质素等的表征。它可以识别整合大分子的不同类型化学单元。此外,最近,该技术在环境样品中存在的微塑料的化学表征中经历了重要的繁荣。这引发了它在这种类型的基质中的使用。我们描述了 Py-GC-MS 的基本原理和模式,并概述了一些环境分析的最新应用,特别强调腐殖质和/或其他类型的有机物成分以及微塑料,但也报告了其他有趣的环境相关应用。
1,00 2.00 4.00 5.00 6.00 8.00 8.00 3月1,800.00 3月1,800 9月1,800 99.00 05
微塑料(MP)是多种多样的,并且存在于广泛的类型,尺寸,颜色,信息和组成中。因此,需要高准确性,选择性,灵敏度和效率来检测和量化MP的高级分析技术。几项研究已经发表了方法和结果。但是,很少有人提供精度,恢复测试和方法比较,以确保结果的正确性。量子级联激光光谱光谱(QCL-µ IR)是基于其独特的化学特征的颗粒对颗粒的无损鉴定。与用于识别的机器学习(ML)算法相结合,导致了快速,准确和稳健的分类。此外,使用热解气相色谱 - 质量光谱法(PY-GC-MS)可以根据其独特的化学成分对MP进行精确表征和定量。MP,以两步化的化学消化和45 µ µM不锈钢过滤器进行进一步过滤。使用随机森林算法重新处理了从QCl-µ IR(日光解决方案SPEROQT 340)获得的光谱数据。使用PY(前沿,实验室;日本福岛)GC-MS(Thermo Scientific,MA,USA)进一步分析了MP,对相关聚合物类型和样品矩阵进行了优化,可实现量化的低限制(在0.01和0.1 µ g之间),并控制恢复。
全球环境中微塑料和纳米塑料 (MNP) 浓度不断上升,引发了人们对人类接触和健康结果的担忧。用于稳健检测组织 MNP 的补充方法,包括热解气相色谱-质谱法、衰减全反射-傅里叶变换红外光谱法和带能量色散光谱的电子显微镜,证实了人类肾脏、肝脏和脑中存在 MNP。这些器官中的 MNP 主要由聚乙烯组成,其他聚合物的浓度较少但很重要。与肝脏或肾脏中的塑料成分相比,脑组织中聚乙烯的比例更高,电子显微镜证实了分离的脑 MNP 的性质,它们主要呈现为纳米级碎片状碎片。这些死亡组织中的塑料浓度不受年龄、性别、种族/民族或死因的影响;死亡时间(2016 年 vs. 2024 年)是一个重要因素,肝脏和脑样本中的 MNP 浓度随时间推移而增加(P = 0.01)。最后,在一组有痴呆症诊断的死者脑中观察到了更大的 MNP 积累,脑血管壁和免疫细胞中明显沉积。这些结果强调,迫切需要更好地了解塑料在人体组织(尤其是脑)中的暴露途径、吸收和清除途径以及潜在的健康后果。
需要找到具有巨大潜力的可再生能源资源(RER),这是因为石油和天然气已耗尽了其全容量,从而减少了全球产生的能源量。与制剂有关的问题,与酶的水解以及在可能产生生物能源之前必须完成的生物质培养过程有关的问题仍在持续的计划中得到解决。由于纳米技术为多种响应和操作提供了独特的活性领域,因此它可以克服这些生物质来源带来的困难。热解可用于可持续产生化学物质并从生物质中产生化学物质。但是,该过程的高生产费用阻止了它被广泛使用。使用废热和可再生祖细胞制造高质量的活性碳纳米颗粒,可以大大提高这种方法的长期可靠性和财务可行性。本文建议使用生物量热解生成绿色碳纳米材料(BP-GGCN)进行生物燃料和生物能源生产。建议的方法通过使用残留的热解气体和热废物产生上三维石墨烯气泡(3DGB)来充分利用生物质热解的财务收益和可持续性。最终的3DGB在能源存储和生态敏感的应用中效果很好。根据一项生命周期研究,当前方法的总体效果少于传统的化学蒸气沉积(CVD)技术对人类福祉,环境系统和资源的影响。该GGCN的特定品质可帮助生物燃料,生物柴油,酶和微生物燃料电池效果更好。