常规的单连接太阳能电池具有33%的理论效率限制,而多开关太阳能电池(MJSC)当前是唯一克服该限制的技术。热载体太阳能电池(HCSC)的演示是另一种依赖于收获光生成的携带者的动能的高耐高率方法,由于缓解携带者的热力化的困难。在这封信中,我们通过引入热载体太阳能电池(HCMJSC),这两个概念的协同作用,这是一个带有薄热载体顶交界处的MJSC。使用详细的平衡模型,我们将不同设备的效率与三个参数的函数进行比较:顶部和底部连接的带隙,顶部和底部连接的带隙,顶部和底部连接的效率,以及有效的热量系数,这封装了热化和光捕获的信息。除了允许比MJSC的材料组合范围更广泛,我们还表明,HCMJSC可以达到比HCSC较大的热化系数高的MJSC的效率。因此,HCMJSC可以为开发基于热载体的高效设备提供首选的途径。
电子 - 光子相互作用被称为决定电和热性能的主要机制之一。,它改变了载体运输行为,并将基本限制设定为载体移动性。建立电子如何与声子相互作用以及对载体传输性质的影响对于开发高效率电子设备的影响至关重要。在这里,直接观察到由Bifeo 3外延薄膜中电子偶联介导的载体传输行为。声音子是由反压电效应产生的,并与光载体结合。通过电子 - 音波耦合,由于热载体和声子之间的耦合,已经观察到甜甜圈形载体分布。热载体准焊接的运输长度可以在1 ps内达到340 nm。结果提出了一种有效的方法来研究电子 - 音波相互作用与时间和空间分辨率的影响,这对于设计和改善电子设备非常重要。
微纳米电子器件中的有效散热需要在室温以上运行的热载体长距离传播。然而,热声子(介电纳米材料中的主要热载体)仅在几百纳米之后就会耗散热能。理论预测表面声子极化子 (SPhP) 的平均自由程可达数百微米,这可能会改善纳米材料的整体散热。在这项工作中,我们通过实验证明了 SPhP 的这种长距离热传输。使用 3 x 技术,我们测量了不同加热器-传感器距离、膜厚度和温度下 SiN 纳米膜的平面内热导率。我们发现薄纳米膜支持 SPhP 的热传输,这可以通过热导率随温度升高而增加来证明。值得注意的是,距离加热器 200 lm 处测得的热导率始终高于距离加热器 100 lm 处测得的热导率。这一结果表明,SPhP 的热传导至少在数百微米范围内呈准弹道形式。我们的研究结果为室温以上宏观距离的相干热操控铺平了道路,这将影响热管理和极化子学的应用。
抽象发光构成了对金属热载体过程的独特洞察力,包括用于传感和能量应用的等离子纳米结构中的载体过程。然而,金属发光本质上是弱的,其微观起源仍然存在很广泛的争论,并且它的纳米级载体动力学的潜力在很大程度上无法解释。在这里,我们揭示了从薄单晶金质量产生的发光中的量子力学效应。特别是,我们提供了第一个原理模拟支持的实验证据,以证明其光致发光的起源(即,在互面板中令人兴奋时,会从电子/孔重组中产生的辐射发射)。我们的模型使我们能够确定由于量子机械效应而导致的测得的金发光的变化,因为金纤维厚度降低。令人兴奋的是,这种效应在厚度高达40 nm的发光信号中可观察到,这与费米水平附近电子带结构的平面离散性有关。我们通过第一个原理建模来定性地重现观测值,从而确立了在金单晶型中的发光统一描述,并将其广泛的应用作为携带者的探针,以探测本材料中的载体动力学和光 - 摩擦相互作用。我们的研究为在众多材料系统中的热载体和电荷转移动力学的未来探索铺平了道路。
对二维材料中强相关物质的研究已成为探索冷凝物理物理学以及新型设备平台的设计的激动人心的前景。Moiré工程具有2D层具有层间扭曲角度,已被证明是工程电子相关性的强大工具。在魔术角扭曲的双层石墨烯中,石墨烯层之间的扭曲角1.1◦产生Moiré超晶格电位。平坦的电子带出现在费米水平上,其中各种相互作用驱动的多体量子相可以出现。在二维中研究强电子相关性的另一个途径是将本质相关的散装晶体剥落到原子极限中。2D HET-腐蚀中强相关系统的光电子响应是一种强大的探针,因为它可以洞悉这些系统中电子传输属性和基本的轻质 - 摩擦相互作用。在本文中,我们研究了两种密切相关的2D材料:MATBG和Cuprate超导体BI 2 SR 2 SR 2 CACU 2 O 8-δ(BSCCO-2212)。我们利用不同的光电技术来研究MATBG平面带中相关电子的基本特性,以及二维BSCCO-2212层的潜力,以用于量子传感中的应用。首先,我们通过其热电传输研究了MATBG平面带的电子光谱。我们使用光激发来诱导平面电子中的热梯度,从而产生电荷电流。我们报告了异常的热电学,这为在牢固相互互动的扁平带中局部和脱位的电子状态共存提供了有力的证据。接下来,我们使用频率分辨的光电固定技术研究MATBG扁平带中热载体冷却的动力学。引人注目的是,我们发现热载体可以有效地将能量放松到低温温度下。与双层石墨烯样品相反。我们提出了一种新型的MATBG中热载体的Umklapp Electron-Phonon散射机制,由MoiréSuperElstrattice潜力实现。最后,我们探索了基于超薄BSCCO-2212薄片的高t c的超导光电探测器的发展。我们制造的高质量样品在电信波长下表现出色。我们在自由空间和波导耦合器件中观察到在T = 77 K处的快速和敏感的辐射响应,以及通过非透明测量,雪崩检测机制在T = 20 K时在T = 20 K处观察到单光子敏感性。
缺乏对金属 - 触发器界面处等离子体介导的电荷转移的详细机械理解,严重限制了有效的光伏和光催化装置的设计。与直接的金属到 - 触发器界面电荷转移相比,由金属中等离子体衰变产生的热电子产生的热电子的间接转移的相对贡献是相对的贡献。在这里,当对共振激发时,我们证明了从金纳米棒到氧化钛壳的总体电子转移效率为44±3%。我们证明,其中一半源自通过激发等离子的直接界面电荷转移。我们能够通过多模式的频率分辨方法来区分直接和间接途径,通过单粒子散射光谱和具有可变泵波长的时间分辨瞬态吸收光谱测量均相等离子体线宽。我们的结果表明,直接等离子体诱导的电荷转移途径是提高热载体提取效率的一种有希望的方法,该方法主要通过非特异性加热而导致的金属内在衰减。
摘要:飞秒内的等离激元激发衰减,将非热(通常称为“热”)载体留在后面,可以注入分子结构中,以触发化学反应,而这些反应否则无法达到一个被称为等离子催化的过程。在这封信中,我们证明了谐振器结构和等离子纳米颗粒之间的强耦合可用于控制等离激元激发能与电荷注入能量之间的光谱重叠。我们的原子描述通过辐射反应潜力,将实时密度功能性理论夫妇自搭与电磁谐振器结构。对谐振器的控制提供了一个额外的旋钮,可用于非侵入性的等离激元催化,在这里超过6倍,并动态地反应催化剂的催化剂是现代催化的新方面。关键字:等离激元催化,强光 - 物质耦合,热载体,偏振化学,局部表面等离子体,密度功能理论
摘要:相变材料 (PCM) 已成为潜热热能存储 (LHTES) 系统的有前途的解决方案,为在各种工程应用中存储来自可再生能源的能源提供了巨大的潜力。本研究重点是通过将 LHTES 与不同的 PCM 罐配置集成来优化太阳能冷却系统。研究选择了 TRNSYS 仿真软件,并使用从实验室系统原型收集的实验数据进行系统验证。结果表明,使用 PCM 可显著降低 6.2% 的辅助能耗。此外,与不使用 PCM 相比,使用 PCM 时,从储罐到辅助流体加热器的热载体温度流超过 90 ◦ C 的时间延长了 27.8%。在多变的天气条件下,在 LHTES 中使用 PCM 更有效。在观察到天气条件变化的那一天,大约 98% 的冷却负荷是由产生的太阳能提供的。研究结果可用于优化太阳能冷却系统,这将有助于减少使用不可再生燃料的冷却系统对环境的影响。
摘要:晶格动力学对于光伏材料性能,控制动态障碍,热载体冷却,电荷载体重组和运输至关重要。软金属 - 甲基钙钛矿表现出特别有趣的动力学,拉曼光谱表现出异常宽阔的低频反应,其起源仍在争论。在这里,我们利用超低频率拉曼和红外Terahertz时域光谱镜来对各种金属壁半导体的振动响应进行系统的检查:FAPBI 3,MAPBI X BR 3-x,3-x,cspbbr 3,cspbbr 3,pbi 2,pbi 2,pbi 2 agbbibr 6,agbibr 6,agbibr 6,agbib 6,cubbi 6,cubi 6,cui 6,and and and and and and and and and and and and and and and and and and and and and。我们排除外部缺陷,八面体倾斜,阳离子孤对和“液体样”玻色子峰,这是辩论中心拉曼峰的原因。相反,我们提出,中央拉曼反应是由拉曼活性,低能声子模式的显着扩展的相互作用而产生的,这些模式被Bose-Einstein统计数据从低频的人群成分强烈扩大。这些发现阐明了在柔软的金属壁式半导体中出现的光伏应用中的光相互作用的复杂性,用于光伏应用。l