摘要:在这项工作中,开发了用于水中的GD 3+离子检测的电解石墨烯场效应晶体管。通过在聚酰亚胺的光载体上制造了晶体管的源和排水电极,而石墨烯通道则是通过用喷墨打印氧化石墨烯墨水墨水来获得的,随后将氧化石墨烯墨水还原以减少氧化石墨烯。GD 3+选择性配体DOTA由炔烃连接器功能化,以通过在金电极上的Chemistry将其移植而不会失去其对GD 3+的影响。全面描述了合成途径,配体,接头和功能化表面的特征是电化学分析和光谱。AS官能化电极用作石墨烯晶体管中的栅极,因此可以调节源量电流作为其电势的函数,该电源本身是由在门表面上捕获的GD 3+浓度调节的。即使在包含其他潜在干扰离子的样品中,获得的传感器也能够量化GD 3+,例如Ni 2+,Ca 2+,Na+和3+。量化范围从1 pm到10 mm,对于三价离子,灵敏度为20 mV dec -1。这为医院或工业废水中的GD 3+定量铺平了道路。
Mbaye Dieng,Mohamed Bensifia,JérômeBorme,Ileana Florea,Catarina Abreu等。CVD石墨烯的湿化学非共价官能化:分子掺杂及其对电解质配备石墨烯现场效果晶体管晶体管的影响。物理化学杂志C,2022,126(9),pp.4522-4533。10.1021/acs.jpcc.1c10737。hal-03871463
摘要 — 我们提出了一种基于电荷准静态模型的显式小信号石墨烯场效应晶体管 (GFET) 参数提取程序。通过对 300 nm 器件进行高频(高达 18 GHz)晶圆上测量,精确验证了小信号参数对栅极电压和频率的依赖性。与其他只关注少数参数的工作不同,这些参数是同时研究的。首次将有效的程序应用于 GFET,以从 Y 参数中去除接触电阻和栅极电阻。使用这些方法可以得到提取小信号模型参数的简单方程,这对于射频电路设计非常有用。此外,我们首次展示了本征 GFET 非互易电容模型与栅极电压和频率的实验验证。还给出了测量的单位增益和最大振荡频率以及电流和功率增益与栅极电压依赖性的精确模型。
石墨烯场效应晶体管(G-FET)似乎是用于感测电荷的合适候选者,因此引起了对离子和化学检测的浓厚兴趣。尤其是它们的高灵敏度,化学鲁棒性,透明度和弯曲性,具有独特的结合,用于接口生活和软质。这里证明了它们通过将它们与离子通道偶联受体(ICCR)相结合的能力来证明它们的能力。这些受体在活细胞膜内自然或人工表达,以产生感兴趣的化学物质。在这里,这些生物传感器已成功地与G-FET阵列结合使用,该阵列将ICCR的生物激活转换为可读的电子信号。该混合生物电机设备利用生物体受体的优势和石墨烯场的效应,可以选择性检测生物分子,这是当前电子传感器的缺点。此外,G-FET允许歧视离子滤光器的极性,否则这些频率却隐藏在常规的电生理记录中。G-FET阵列具有的多站点记录能力为多尺度感测和高吞吐量筛选的蜂窝溶液或分析物提供了许多可能性,这既是健康和环境监测的基本兴趣又具有应用的兴趣。
VER 2013 年全球有 3500 万人患有痴呆症 [1]。预计这一数字每 20 年翻一番,到 2030 年将达到 6570 万人,到 2050 年将达到 1.154 亿人 [2]。老年痴呆症最常见的原因是阿尔茨海默病 (AD),目前全球有超过 1700 万患者 [3]。AD 通常与错误折叠蛋白质(如淀粉样蛋白-β (Aβ) 肽)在脑中的沉积和聚集有关,并在中枢神经系统形成斑块 [4][5][6]。这些聚集体可以以纤维状和非纤维状形式观察到。Aβ 有两种同工型,Aβ40 和 Aβ42,它们以不同的速率自发结合成低聚物并产生纤维和斑块 [7][8]。由于 Aβ42 聚集体的生成速度比 Aβ40 更快,因此它可能更具神经毒性 [9]。AD 诊断生物传感器,例如基于半导体的场效应晶体管 (FET),可以小型化电流笨重且