变量 数值 单位 参考 电解器效率(LHV) 65 % [36] 电解器 H 2 出口压力 30 bar [36] H 2 压缩多变效率 60 % [37] H 2 存储最大压力 350 bar [38] 气网压力 50 bar [39] CO 2 压缩多变效率 85 % [40] CH 4 压缩多变效率 85 % [40] 电解器标称功率 3 MW 本文 甲烷化反应器压力 10 bar [3] 甲烷化反应器温度 350 ºC [3] CO 2 源能耗 0.64 kWh/kg CO2 [41]
目的 面对温室效应导致的气体排放增加和化石燃料枯竭,需要采用对环境影响小且促进可再生能源的技术来满足能源需求。最近有报道称,磁加热激活的 CO 2 甲烷化是一种高效创新的电转气技术,可以成功储存可再生能源并增值二氧化碳。在这项工作中,我们对该过程进行了生命周期评估 (LCA),以突出该技术的环境潜力及其与传统加热技术的竞争力。方法 本 LCA 使用 IMPACT 2002+。所研究的过程集成了甲烷化、水电解和 CO 2 捕获与分离。这项“从摇篮到大门”的 LCA 研究不考虑反应产物甲烷的使用。使用的功能单元是产生的 CH.i 的能量含量。 LCA 是使用法国环境与能源管理局 (AD EME) 提供的 2020 年和 2050 年的能源结构数据进行的。消耗数据要么来自文献,要么从 Marbaix (2019) 讨论的 LPCNO 测量中获得。将磁加热激活的 CO 2 甲烷化对环境的影响与使用传统加热 (Helmeth) 并考虑天然气开采对环境影响的电转气厂对环境的影响进行了比较。结果表明,反应物的总流速、CO 2 来源和能源结构对可持续 CH 4 生产的环境影响起着重要作用,而所考虑的催化剂的寿命没有显著影响。由于上述参数可能得到改进,预计到 2050 年,整个过程对环境的影响将减少 75%。这表明,当与工业废气和可再生电力生产相结合时,磁加热激活的甲烷化具有很高的环境潜力。结论与现有的使用外部加热源的类似工艺相比,该技术预计在环境方面具有竞争力,并且具有极强的响应动态性,符合可再生能源生产的间歇性。
2023 年 7 月 21 日星期五,欧洲首个也是唯一一个生物甲烷化研究和测试设施 Bio FARM 在德国施特劳宾开业。Bio FARM 位于施特劳宾污水处理厂内,由 Straubinger Entwässerung und Reinigung (SER) 运营,利用其地理位置优势直接使用沼气和污水污泥进行现场生物甲烷化。该工厂可以在真实环境中运行,并执行具有不同输入和边界条件的转化过程,再现工业规模系统的生物学和流体动力学。因此,Bio FARM 不仅是持续生物甲烷化开发和改进的关键资产,也是重现任何特定流程环境、进行可行性研究和向最终客户提供优化的临时解决方案的平台。
该项目的目的是开发和演示一种自热气化中试规模工艺,通过一系列步骤将森林生物质转化为超清洁、管道质量的可再生气体。项目团队利用位于加州大学河滨分校环境与研究技术中心的 Taylor Energy 中试规模生物质气化测试设施,结合创新的脉冲爆震声能来强化气化过程。开发了一种森林生物质转化为合成气的工艺,以经济地生产管道质量的可再生气体,项目团队演示了关键子系统,以推进气化/重整技术的最新发展,生产用于升级为可再生气体的合成气(合成气)。
将电转气工艺与地下天然气储存相结合,可以有效地储存多余的电力以备后用。枯竭的碳氢化合物储层可以用作储存设施,但在这种地点储存氢气的实际经验有限。这里我们展示了一项现场试验的数据,该试验在枯竭的碳氢化合物储层中储存了 119,353 立方米的氢气与天然气混合。285 天后,氢气回收率为 84.3%,表明该工艺的技术可行性。此外,我们报告称微生物介导了氢气向甲烷的转化。在研究模拟真实储层的中观宇宙的实验室实验中,氢气和二氧化碳在 357 天内的 14 个周期内可重复地转化为甲烷(0.26 mmol l −1 h −1 的释放速率)。理论上,这个速率允许在测试储层中每年生产 114,648 立方米的甲烷(相当于 ~1.08 GWh)。我们的研究证明了氢存储的效率以及在枯竭的碳氢化合物储层中进行地质甲烷化的重要性。
H 2 和 RNG 研发基地 #1) 350 和 700 巴预冷 H 2 分配系统 #2) 隔膜和活塞压缩机 #3) 700 升生物反应器 – 在 18 巴(260 psig)和 60 - 65 o C 下运行,带有搅拌、再循环回路和细胞回收 + 在 350 巴下储存 #4) 200、400 和 900 巴储存 – 总计 625 公斤
摘要:手性氮杂环丙烷是天然产物和各种重要靶分子中发现的重要结构基序。它们是合成手性胺的多功能构建块。虽然催化剂设计的进步使得对映选择性氮杂环丙烷活化烯烃的方法成为可能,但简单且丰富的烷基取代烯烃带来了重大挑战。在这项工作中,我们介绍了一种利用平面手性铑茚基催化剂促进未活化烯烃对映选择性氮杂环丙烷化的新方法。这种转化表现出显着程度的功能基团耐受性,并显示出优于活化烯烃的优异化学选择性,从而提供了多种对映体富集的高价值手性氮杂环丙烷。计算研究揭示了一种逐步氮杂环丙烷化机制,其中烯烃迁移插入起着核心作用。该过程形成了有张力的四元金属环,并作为整个反应中的对映体和速率决定步骤。
1 莱昂大学工业、计算机和航空工程学院电气、系统与自动化工程系,Vegazana 校区,莱昂 24071,西班牙; rgong@unileon.es 2 能源、材料与环境实验室,工程学院,Universitario Puente del Común 校区,萨瓦纳大学,Bogotá Norte Autopista Km. 7,智利 250001,哥伦比亚; ivan.cabeza@unisabana.edu.co(国际奥委会); miguelcaoj@unisabana.edu.co (MC-O.) 3 工程学博士课程,工程学院,Universitario Puente del Com ú n 校区,萨瓦纳大学,Bogotá 北汽车路 7 号,哥伦比亚,Ch í a 250001 4 西班牙莱昂大学 Vegazana s/n 校区化学工程领域化学和应用物理系,24071 莱昂,西班牙 * 通信地址:xagomb@unileon.es
摘要:本研究对包含创新技术(固体氧化物电解质电池共电解器和实验性甲烷转化器)并配有可再生发电机的尖端电转气系统进行了完整的热经济性分析。进行的经济分析(从未应用于此类系统)旨在通过现金流分析估算产品的合成天然气成本。对各种工厂配置(具有不同的工作温度和关键部件的压力水平(电解器:600-850 ◦ C;1-8 bar))进行了比较,以确定可能的热协同效应。进行了参数研究,以评估热力学布置和经济边界条件的影响。结果表明,环境压力系统与共电解器和高温甲烷转化器之间的热协同作用的组合具有最佳的经济性能(合成天然气值降低高达 8%)。如果考虑到一些技术经济驱动因素(存储系统和可再生能源发电的适当规模比、电解池成本的发展和碳税的引入),研究中的电转气解决方案所获得的合成天然气的生产成本(比天然气价格低 80%)在天然气市场上将具有竞争力。
