高视力综合征(由于高IgM引起的血液厚度过多)。由于骨髓与WM细胞浸润,贫血(低红细胞计数和低血红蛋白)。贫血是导致WM治疗的最常见状况。一般而言,血红蛋白水平小于10 g/dl可以用作开始治疗的指示。由于骨髓浸润,血小板计数小于100,000(称为血小板减少症)。宪法症状 - 无力,疲劳,夜汗,发烧或体重减轻。有症状的冷冻球蛋白血症,冷凝集素疾病或严重的周围神经病。全身性淀粉样变性也应在无症状的情况下治疗。有关这些条件的更多信息,请访问“标志和症状”部分的IWMF网站。进行性淋巴结,肝脏或脾脏的症状肿大。与WM有关的肾脏疾病(肾病)。骨髓外的WM细胞质量(外部肿块) - 可以根据质量的位置,大小和生长速率开始治疗。
两种化合物——全氟辛酸 (PFOA) 和全氟辛烷磺酸 (PFOS)——最近受到了《关于持久性有机污染物 (POP) 的斯德哥尔摩公约》的严格审查。2020 年底,欧盟食品监管机构对食品中 PFOA、PFOS 和另外两种 PFAS 化合物——全氟壬酸 (PFNA) 和全氟己烷磺酸 (PFHxS) 的总暴露量设定了限值。此举紧随美国参议院 2019 年 PFAS 排放披露和保护法案,该法案要求对与安全饮用水和有毒化学品管理相关的 PFAS 进行监管。该法案还要求将 172 种指定的 PFAS 立即纳入环境保护署 (EPA) 的有毒物质排放清单 (TRI)。
方法:在此第2阶段,开放标签研究中,23例轻度认知障碍或轻度痴呆症患者每天两次接受20毫克口服NE3107,持续3个月。主要终点评估了使用先进的神经成像分析中神经生理健康和氧化应激(谷胱甘肽水平)中基线的变化。Secondary endpoints evaluated changes from baseline in neuropsychological health using cognitive assessments, including the 11-item Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-Cog11), Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment, Clinical Dementia Rating, Quick Dementia Rating Scale, Alzheimer's Disease Composite Score, and Global Rating of Change (GRC)。探索性终点评估了神经炎症生物标志物(肿瘤坏死因子α,TNF-α)和AD(淀粉样蛋白β和磷酸化tau [p-tau])的基线变化。
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2024 年 12 月 21 日发布。;https://doi.org/10.1101/2024.12.19.629292 doi:bioRxiv preprint
摘要:过热会影响某些抗癌药物的溶解度或亲脂性等特性。这些与温度相关的变化可以提高药物的效率和选择性,因为它们可能会影响药物的生物利用度、通过细胞膜的扩散或活性。最近一种创建热敏分子的方法是将氟原子掺入化学结构中,因为氟可以调节某些化学性质,如结合亲和力。本文我们报道了具有长烃链和同源氟化链的 1,3,5-三氮杂-7-磷杂金刚烷 (PTA) 衍生的磷烷金衍生物的抗癌作用。此外,我们还分析了温度对细胞毒性作用的影响。所研究的金(I)复合物与 PTA 衍生的磷烷对人类结肠癌细胞(Caco-2/TC7 细胞系)表现出抗增殖作用,可能是通过抑制细胞 TrxR 导致细胞内氧化还原状态功能障碍。此外,细胞周期因 p53 的激活而改变,复合物通过线粒体去极化和随之而来的 caspase-3 激活引起细胞凋亡。此外,结果表明,高温和多氟化链的存在会增强这种细胞毒性作用。
1.zheng W#,Yamada SA#,Hung St,Sun W,Zhao L,Fayer MD。增强了介孔二氧化硅中的Menshutkin SN2反应性:表面催化和限制的影响。美国化学学会杂志,2020,142(12):5636-5648。2.MA,Z.,Zheng,W。*,Sun,W。*,Zhao,L。通过甲基功能性[N1,1,1,1] [C10SO4]添加剂增强H2SO4催化的C4烷基化的C4烷基化。AICHE Journal,2023,E18179。3.Zheng,W.,Ma,Z.,Sun,W.,Zhao,L。靶标高效离子液体通过机器学习促进H2SO4催化的C4烷基化。 AICHE Journal,2022,68(7),E17698。 4.MA,Z.,Sha,J.,Zheng,W。*,Sun,W。*,Zhao,L。深共晶溶剂对H2SO4催化烷基化的影响:结合实验和分子动力学模拟。 AICHE Journal,2022,68(4),E17556。 5.zheng W,Wang Z,Sun W,Zhao L,Qian F. H2SO4催化的异丁烷烷基化在长烷基 - 链表面活性剂添加剂促进的低温下。 AICHE期刊。 2021,67(10):E17349。 6.Zheng W,Sun W,Zhao L等。 了解用硫酸或离子液体催化的C4烯烃的等丁烷烷基化的界面行为。 AICHE Journal,2018,64(3):950-960。 7.Zheng W#,Liu C#,Wei X等。 使用离子液体作为催化剂的聚(乙二醇)糖酵解的分子水平溶胀行为。 化学工程科学,2023,267:118329。 8.liu C,Ling Y,Wang Z,Zheng W*,Sun W*,Zhao L.揭示离子液体和甲醇之间的微环境,用于聚乙二醇(乙二醇乙二醇)的酒精分析。3.Zheng,W.,Ma,Z.,Sun,W.,Zhao,L。靶标高效离子液体通过机器学习促进H2SO4催化的C4烷基化。AICHE Journal,2022,68(7),E17698。4.MA,Z.,Sha,J.,Zheng,W。*,Sun,W。*,Zhao,L。深共晶溶剂对H2SO4催化烷基化的影响:结合实验和分子动力学模拟。AICHE Journal,2022,68(4),E17556。5.zheng W,Wang Z,Sun W,Zhao L,Qian F. H2SO4催化的异丁烷烷基化在长烷基 - 链表面活性剂添加剂促进的低温下。AICHE期刊。2021,67(10):E17349。6.Zheng W,Sun W,Zhao L等。 了解用硫酸或离子液体催化的C4烯烃的等丁烷烷基化的界面行为。 AICHE Journal,2018,64(3):950-960。 7.Zheng W#,Liu C#,Wei X等。 使用离子液体作为催化剂的聚(乙二醇)糖酵解的分子水平溶胀行为。 化学工程科学,2023,267:118329。 8.liu C,Ling Y,Wang Z,Zheng W*,Sun W*,Zhao L.揭示离子液体和甲醇之间的微环境,用于聚乙二醇(乙二醇乙二醇)的酒精分析。6.Zheng W,Sun W,Zhao L等。了解用硫酸或离子液体催化的C4烯烃的等丁烷烷基化的界面行为。AICHE Journal,2018,64(3):950-960。7.Zheng W#,Liu C#,Wei X等。使用离子液体作为催化剂的聚(乙二醇)糖酵解的分子水平溶胀行为。化学工程科学,2023,267:118329。8.liu C,Ling Y,Wang Z,Zheng W*,Sun W*,Zhao L.揭示离子液体和甲醇之间的微环境,用于聚乙二醇(乙二醇乙二醇)的酒精分析。化学工程科学。2022,247:117024。9.zheng W,Sun W,Zhao L,Qian F.建模由疏水二氧化硅纳米孔中的甲基咪唑的固体/液体界面特性。化学工程科学。2021,231:116333。10.Zheng W,Sun W,Zhao L等。 了解液态液反应中离子液/硫酸催化剂的微结构和界面特性。 化学工程科学,2019,205:287-298。 11.zheng W#,Cao Piao#,Sun W,Zhao L等。 用Brønsted酸性离子液/硫酸催化的C4烯烃对异丁烷烷基化的实验和建模研究。 化学工程杂志。 2019,377:119578。 12.Zheng W,Sun W,Zhao L等。 使用复合离子液体作为催化剂,将异丁烷烷基化与2-丁烯进行多尺度建模。 化学工程科学,2018,186:209-218。 13.Zheng W,Sun W,Zhao L等。 基于分子动态模拟的亚丁烷烷基化咪唑离子液体的筛选。 化学工程科学,2018,183:115-122。 14.Zheng W,Sun W,Zhao L等。 使用离子液体作为催化剂的C4烯烃对异丁烷烷基化的界面行为进行建模。 化学工程科学,2017,166:42-52。 15.Zheng W,Sun W,Zhao L等。 通过离子液体微乳液对纳米级金属有机框架的可控制备。 工业与工程化学研究,2017年,第56(20):5899-5905。10.Zheng W,Sun W,Zhao L等。了解液态液反应中离子液/硫酸催化剂的微结构和界面特性。化学工程科学,2019,205:287-298。11.zheng W#,Cao Piao#,Sun W,Zhao L等。用Brønsted酸性离子液/硫酸催化的C4烯烃对异丁烷烷基化的实验和建模研究。化学工程杂志。2019,377:119578。 12.Zheng W,Sun W,Zhao L等。 使用复合离子液体作为催化剂,将异丁烷烷基化与2-丁烯进行多尺度建模。 化学工程科学,2018,186:209-218。 13.Zheng W,Sun W,Zhao L等。 基于分子动态模拟的亚丁烷烷基化咪唑离子液体的筛选。 化学工程科学,2018,183:115-122。 14.Zheng W,Sun W,Zhao L等。 使用离子液体作为催化剂的C4烯烃对异丁烷烷基化的界面行为进行建模。 化学工程科学,2017,166:42-52。 15.Zheng W,Sun W,Zhao L等。 通过离子液体微乳液对纳米级金属有机框架的可控制备。 工业与工程化学研究,2017年,第56(20):5899-5905。2019,377:119578。12.Zheng W,Sun W,Zhao L等。 使用复合离子液体作为催化剂,将异丁烷烷基化与2-丁烯进行多尺度建模。 化学工程科学,2018,186:209-218。 13.Zheng W,Sun W,Zhao L等。 基于分子动态模拟的亚丁烷烷基化咪唑离子液体的筛选。 化学工程科学,2018,183:115-122。 14.Zheng W,Sun W,Zhao L等。 使用离子液体作为催化剂的C4烯烃对异丁烷烷基化的界面行为进行建模。 化学工程科学,2017,166:42-52。 15.Zheng W,Sun W,Zhao L等。 通过离子液体微乳液对纳米级金属有机框架的可控制备。 工业与工程化学研究,2017年,第56(20):5899-5905。12.Zheng W,Sun W,Zhao L等。使用复合离子液体作为催化剂,将异丁烷烷基化与2-丁烯进行多尺度建模。化学工程科学,2018,186:209-218。13.Zheng W,Sun W,Zhao L等。 基于分子动态模拟的亚丁烷烷基化咪唑离子液体的筛选。 化学工程科学,2018,183:115-122。 14.Zheng W,Sun W,Zhao L等。 使用离子液体作为催化剂的C4烯烃对异丁烷烷基化的界面行为进行建模。 化学工程科学,2017,166:42-52。 15.Zheng W,Sun W,Zhao L等。 通过离子液体微乳液对纳米级金属有机框架的可控制备。 工业与工程化学研究,2017年,第56(20):5899-5905。13.Zheng W,Sun W,Zhao L等。基于分子动态模拟的亚丁烷烷基化咪唑离子液体的筛选。化学工程科学,2018,183:115-122。14.Zheng W,Sun W,Zhao L等。 使用离子液体作为催化剂的C4烯烃对异丁烷烷基化的界面行为进行建模。 化学工程科学,2017,166:42-52。 15.Zheng W,Sun W,Zhao L等。 通过离子液体微乳液对纳米级金属有机框架的可控制备。 工业与工程化学研究,2017年,第56(20):5899-5905。14.Zheng W,Sun W,Zhao L等。使用离子液体作为催化剂的C4烯烃对异丁烷烷基化的界面行为进行建模。化学工程科学,2017,166:42-52。15.Zheng W,Sun W,Zhao L等。 通过离子液体微乳液对纳米级金属有机框架的可控制备。 工业与工程化学研究,2017年,第56(20):5899-5905。15.Zheng W,Sun W,Zhao L等。通过离子液体微乳液对纳米级金属有机框架的可控制备。工业与工程化学研究,2017年,第56(20):5899-5905。16.Zheng W,Zhao L,Sun W,QianF。了解纳米级硅孔中甲基咪唑的限制效应和动力学。物理化学杂志C. 2021,125(13):7421-7430。17.Wang Z#,Zheng W#,Li B等。在共价有机框架中限制了离子液体,朝着高安全锂金属电池的合理设计。化学工程杂志,2022,433:133749。
抗生素丝裂霉素是烷基化剂组的细胞抑制药物。丝裂霉素是一种从链霉菌中分离出具有抗塑性作用的抗生素。它以非活动形式存在。激活三官能烷基化剂是快速的,在生理pH下在血清中存在NADPH的情况下或细胞内几乎在体内的所有细胞中,除了大脑外,由于有丝霉素无法克服血脑屏障。3烷基自由基全部源自喹酮,氮杂氨酸和氨基甲酸酯基。作用机理主要基于DNA的烷基化(RNA的程度较小),并具有相应的DNA合成抑制作用。DNA损伤的程度与临床效应相关,并且在抗性细胞中比敏感细胞低。与其他烷基化剂一样,增殖细胞比在细胞周期的静止阶段(GO)的损害更大程度。此外,释放自由过氧化物自由基,特别是在较高剂量的情况下,导致DNA断裂。过氧化物自由基的释放与副作用的器官特异性模式有关。
K-Ras 是人类癌症中最常见的突变致癌基因,但直到最近,直接针对 K-Ras 突变体的小分子靶向治疗大多未取得成功。在 Switch-II 下发现具有共价半胱氨酸交联分子的变构口袋,这为开发靶向疗法提供了可能,这种疗法可以选择性地与 K-Ras(G12C) 突变中反应性极强的获得性半胱氨酸结合,而不会影响野生型蛋白质。Sotorasib 和 adagrasib 是两种先进的 Switch-II Pocket 抑制剂,已获得 FDA 批准用于治疗 K-Ras(G12C) 驱动的非小细胞肺癌。然而,最常见的 K-Ras 突变 G12D(尤其常见于胰腺导管腺癌)由于体细胞天冬氨酸残基的亲核性较差,因此共价药物无法靶向该突变。这里我们介绍了一组基于马来酸内酯的亲电试剂,它们利用环张力将 K-Ras(G12D) 与突变天冬氨酸交联,形成稳定的共价复合物。通过 X 射线晶体学的结构洞察和对亲电试剂攻击的立体电子要求的利用,开发出了一种取代的马来酸内酯,它能抵抗水性缓冲液的攻击,但能与 GDP 和 GTP 状态下的 K-Ras 的天冬氨酸-12 迅速交联。信号传导能力强的 GTP 状态靶向可以有效抑制下游信号传导和携带 K-Ras(G12D) 突变的癌细胞的增殖,以及小鼠细胞系衍生异种移植瘤的肿瘤生长。我们的研究结果表明,共价抑制剂的设计合理,可以靶向 K-Ras(G12D) 中非催化羧酸侧链,而这种侧链一直受到传统药物发现工作的阻碍。
RNase A是一种用于分子生物学应用的牛胰腺内切核酸酶。RNase A的主要应用是从制备质粒DNA以及提取质粒DNA中去除RNA。它也用于去除非特异性结合的RNA; RNase保护分析; RNA序列的分析以及蛋白质样品中包含的RNA的水解。rNase A在嘧啶核苷酸的3¢磷酸盐处攻击。PG-PG-PC-PA-PG的序列将被裂解以得到PG-PG-PCP和A-PG。最高的活性用单链RNA表现出来。RNase A是一个包含4个二硫键的单链多肽。 rnase a可以通过烷基化12或119的烷基化来抑制,这些烷基化存在于酶的活跃部位中。 RNase A的活化剂包括钾和钠盐。 Molecular mass: 13.7 kDa (amino acid sequence) Extinction coefficient: E1% = 7.1% (280nm) Isoelectric point: pI: 9.6 Optimum temperature: 60°C (activity range of 15 - 70°C) Optimum pH: 7.5 (activity range of 6 - 10) Inhibitors: Ribonuclease inhibitor Activity (Kunitz): ≥60 units/mg蛋白质RNase A是一个包含4个二硫键的单链多肽。rnase a可以通过烷基化12或119的烷基化来抑制,这些烷基化存在于酶的活跃部位中。RNase A的活化剂包括钾和钠盐。 Molecular mass: 13.7 kDa (amino acid sequence) Extinction coefficient: E1% = 7.1% (280nm) Isoelectric point: pI: 9.6 Optimum temperature: 60°C (activity range of 15 - 70°C) Optimum pH: 7.5 (activity range of 6 - 10) Inhibitors: Ribonuclease inhibitor Activity (Kunitz): ≥60 units/mg蛋白质RNase A的活化剂包括钾和钠盐。Molecular mass: 13.7 kDa (amino acid sequence) Extinction coefficient: E1% = 7.1% (280nm) Isoelectric point: pI: 9.6 Optimum temperature: 60°C (activity range of 15 - 70°C) Optimum pH: 7.5 (activity range of 6 - 10) Inhibitors: Ribonuclease inhibitor Activity (Kunitz): ≥60 units/mg蛋白质
增加特异性的方法的方法之一和细胞抑制药物的生物相容性是与氧化石墨烯的结合物的创造。石墨烯及其氧化形式 - 氧化石墨烯(GO) - 由于其反应性和发育的表面,可以进行共价和非共价功能化,因此已成为纳米医学领域的新材料,这允许提供药物的固定化。本文致力于一种基于GO的非共价偶联物的生物相容性的合成,鉴定和研究的新方法,以及基于1,3,5-三嗪的烷基化剂。偶联物是血液相容的(在1-200 mg∙l 1中,溶血程度不超过5%),在模型反应中表现出抗氧化活性,与DPPH,降解量降低1.7倍,在GO-1 75 mg 1的最大浓度下降低了1.7倍,并具有1.7倍的浓度,并依赖于75 mg l 1 l 1)。并且还对细胞系A549,PANC-1和HELA表现出细胞毒性。最大细胞毒性显示在HeLa细胞系中(IC 50 = 2.5 L m)。2023由Elsevier B.V.