第102届海上安全委员会(MSC 102)于2020年11月4日至11日召开。受新型冠状病毒感染的肺炎疫情影响,本次会议以视频会议方式召开。近期,IMO公布了MSC 102会议纪要、决议和通函,现将本次会议的审议情况和结果通知如下。 1.对通过的条约及相关规范的主要修改 本次会议通过的主要强制性要求如下。 (1)修订《SOLAS公约》有关系泊设备的内容(见附件1) 如下面3.2(1)所述,本次会议提出了关于安全系泊设备、系泊设备包括系泊缆等的设计和选择的新指南。 新检查和维护指南已获得批准。同时,通过了 SOLAS 公约 II-1/3-8 的修正案,规定了这些条款的适用。 适用范围:2024 年 1 月 1 日 (2) SOLAS 公约修正案,以统一水密性要求(参见附件 1、6 和 7) SOLAS 公约 II-1/B-1 - B-4 部分已通过修正案以统一水密性要求的要求对于 SOLAS II-1/12 修正案的早期应用,请参见下文 3.2(3)。 生效日期:2024 年 1 月 1 日 (3) IGF 规则修订(见附件 2) IGF 规则已通过以下三项修订。 i) 在 6.7.1.1 中,油箱围堰从需要泄压系统的区域移除 ii) 对 11.8 的新增内容,要求燃油调节室配备固定灭火系统 iii) 按照 16.3.3.5.1 的规定 增加除铝合金以外的材料的欠匹配焊接接头拉伸试验规定生效日期:2024 年 1 月 1 日
第102届海上安全委员会(MSC 102)于2020年11月4日至11日召开。受新型冠状病毒感染的肺炎疫情影响,本次会议以视频会议方式召开。近期,IMO公布了MSC 102会议纪要、决议和通函,现将本次会议的审议情况和结果通知如下。 1.对通过的条约及相关规范的主要修改 本次会议通过的主要强制性要求如下。 (1)修订《SOLAS公约》有关系泊设备的内容(见附件1) 如下面3.2(1)所述,本次会议提出了关于安全系泊设备、系泊设备包括系泊缆等的设计和选择的新指南。 新检查和维护指南已获得批准。同时,通过了 SOLAS 公约 II-1/3-8 的修正案,规定了这些条款的适用。 适用范围:2024 年 1 月 1 日 (2) SOLAS 公约修正案,以统一水密性要求(参见附件 1、6 和 7) SOLAS 公约 II-1/B-1 - B-4 部分已通过修正案以统一水密性要求的要求对于 SOLAS II-1/12 修正案的早期应用,请参见下文 3.2(3)。 生效日期:2024 年 1 月 1 日 (3) IGF 规则修订(见附件 2) IGF 规则已通过以下三项修订。 i) 在 6.7.1.1 中,油箱围堰从需要泄压系统的区域移除 ii) 对 11.8 的新增内容,要求燃油调节室配备固定灭火系统 iii) 按照 16.3.3.5.1 的规定 增加除铝合金以外的材料的欠匹配焊接接头拉伸试验规定生效日期:2024 年 1 月 1 日
Stokota 提供全套飞机加油机、加油车、拖车、半挂车、消防栓分配器和消防栓车。所有设备均已获得 MID 认证,可用于机场侧或补充路侧。Stokota 品质 Stokota 自行设计和制造油箱,从铝、不锈钢或碳钢板到装备齐全的油箱。这些油箱自动焊接,并通过射线检查焊接接头。之后,根据 ADR 标准对它们进行压力测试、容量测量测试、安全装载和制动测试。从框架到电气、气动和液压,大多数设备都是内部设计和制造的。安全 Stokota 坚决致力于安全和人体工程学。在标准越来越严格的不断变化的世界中,技术为我们提供了使所有者和用户受益的解决方案。更高的工作效率和效率与更高的安全性和人体工程学相结合。因此,我们使用最先进的技术为客户提供高水平的安全性和用户友好的设备。所有 Stokota 航空加油车均按照现行标准(EN、JIG、ADR、EI 等)制造。标准或定制 Stokota 为航空加油车提供标准解决方案。当需要特定车辆和设备时,我们会转向更定制的产品,提供多种选择。产品范围 Stokota 提供全系列的刚性底盘、半挂车或拖车上的飞机加油机,油箱容量从 5,000L 到 65,000L。流量范围从低流量到 3.500 l/min。地面支持设备 除了飞机加油机和消防栓分配器外,Stokota 还能够提供加油楼梯和其他 GSE。
[1] R. Lewis,U。Olofsson。轮轨界面手册,第一版。;伍德海德出版有限公司:英国剑桥,2009年。[2] O. Hajizad,A。Kumar,Z。Li,R.H。Petrov,J。Sietsma,R。Dollevoet。微观结构对铁路应用中Bainitic钢的机械性能的影响。金属,2019,9,778。[3] i.v.gorynin。结构材料是北极基础设施可靠性和环境安全的重要组成部分。北极:生态与经济学2015。卷。3,第19号,pp。82-87。(在俄语)[4] E.I.Khlusova,O.V。 sych。 为北极创造冷抗性结构材料。 历史,经验,现代状态。 创新2018。 卷。 11,第241页,pp。 85-92。 (在俄语)[5] V.R. Kuz'min,A.M。 Ishkov。 预测结构的冷阻力和设备的可操作性。 m。:Mashinostroenie,1996。 (在俄语)[6] I.S. Filatov,A.M。 ISHKOV,I.N。 Cherskii。 改善寒冷气候条件的材料和设备的质量和可靠性的问题。 Yakutsk:科学和技术信息中心,1987年。 (在俄语)[7] A.K. Andreev,B.S。 ermakov。 低温设备的材料。 s-petersburg:大学ITMO,2016年。 (在俄语)[8] Yu.P. Solntsev,B.S。 Ermakov,O.I。 睡觉。 ermakov。Khlusova,O.V。sych。为北极创造冷抗性结构材料。历史,经验,现代状态。创新2018。卷。11,第241页,pp。85-92。 (在俄语)[5] V.R. Kuz'min,A.M。 Ishkov。 预测结构的冷阻力和设备的可操作性。 m。:Mashinostroenie,1996。 (在俄语)[6] I.S. Filatov,A.M。 ISHKOV,I.N。 Cherskii。 改善寒冷气候条件的材料和设备的质量和可靠性的问题。 Yakutsk:科学和技术信息中心,1987年。 (在俄语)[7] A.K. Andreev,B.S。 ermakov。 低温设备的材料。 s-petersburg:大学ITMO,2016年。 (在俄语)[8] Yu.P. Solntsev,B.S。 Ermakov,O.I。 睡觉。 ermakov。85-92。(在俄语)[5] V.R.Kuz'min,A.M。 Ishkov。 预测结构的冷阻力和设备的可操作性。 m。:Mashinostroenie,1996。 (在俄语)[6] I.S. Filatov,A.M。 ISHKOV,I.N。 Cherskii。 改善寒冷气候条件的材料和设备的质量和可靠性的问题。 Yakutsk:科学和技术信息中心,1987年。 (在俄语)[7] A.K. Andreev,B.S。 ermakov。 低温设备的材料。 s-petersburg:大学ITMO,2016年。 (在俄语)[8] Yu.P. Solntsev,B.S。 Ermakov,O.I。 睡觉。 ermakov。Kuz'min,A.M。 Ishkov。预测结构的冷阻力和设备的可操作性。m。:Mashinostroenie,1996。(在俄语)[6] I.S.Filatov,A.M。 ISHKOV,I.N。 Cherskii。 改善寒冷气候条件的材料和设备的质量和可靠性的问题。 Yakutsk:科学和技术信息中心,1987年。 (在俄语)[7] A.K. Andreev,B.S。 ermakov。 低温设备的材料。 s-petersburg:大学ITMO,2016年。 (在俄语)[8] Yu.P. Solntsev,B.S。 Ermakov,O.I。 睡觉。 ermakov。Filatov,A.M。 ISHKOV,I.N。Cherskii。 改善寒冷气候条件的材料和设备的质量和可靠性的问题。 Yakutsk:科学和技术信息中心,1987年。 (在俄语)[7] A.K. Andreev,B.S。 ermakov。 低温设备的材料。 s-petersburg:大学ITMO,2016年。 (在俄语)[8] Yu.P. Solntsev,B.S。 Ermakov,O.I。 睡觉。 ermakov。Cherskii。改善寒冷气候条件的材料和设备的质量和可靠性的问题。Yakutsk:科学和技术信息中心,1987年。(在俄语)[7] A.K.Andreev,B.S。 ermakov。 低温设备的材料。 s-petersburg:大学ITMO,2016年。 (在俄语)[8] Yu.P. Solntsev,B.S。 Ermakov,O.I。 睡觉。 ermakov。Andreev,B.S。ermakov。低温设备的材料。s-petersburg:大学ITMO,2016年。(在俄语)[8] Yu.P.Solntsev,B.S。 Ermakov,O.I。 睡觉。 ermakov。Solntsev,B.S。Ermakov,O.I。 睡觉。 ermakov。Ermakov,O.I。睡觉。ermakov。低温和低温温度的材料。S-Petersburg:Khimizdat,2008。(在俄语)[9] B.S.资源和维修低温和食品设备的钢结构。S-Petersburg:Spbgunipt,2011年。(在Russ。)[10] A.I.Rudskoi,S.G。Parshin。高强度冷和低温钢的冶金和可焊性的高级趋势。金属2021,11,1891。[11] J.-K。 Ren,Q.-Y.Chen,J。Chen,Z.-Y. 刘。 钒添加在热滚动的高MN奥氏体钢中的拉伸和低温 - 温度的夏比冲击特性中的作用。 材料科学与工程A 2021,811,141063 [12] 12 B. Kim,S.G。Lee,D.W。 Kim,Y.H。 Jo,J。Bae,S.S。Sohn,S。Lee。 添加Ni和Cu对奥氏体22mn-0.45c – 1al钢的低温 - 温度拉伸和夏比冲击特性的影响。 合金和化合物杂志2020,815,152407。 [13] C. Li,K。Li,J。Dong,J。Wang,Z。Shao。 FE-20/27MN-4AL-0.3C低磁性钢的机械行为和微观结构在房间和低温温度下。 材料科学与工程A 2021,809,140998。 [14] P.P. Poletskov,A.S。 Kuznetsova,D.YU。 Alekseev,对热卷高强度冷耐钢板产物的生产中世界一流发展的分析,其屈服强度为≥600n/mm2。 Nosov Magnitogorsk州立技术大学2020年的Vestnik。 卷。 18,第4页,pp。 32-38。 (在俄语)[15] L.M. [16] A.B.Chen,J。Chen,Z.-Y.刘。钒添加在热滚动的高MN奥氏体钢中的拉伸和低温 - 温度的夏比冲击特性中的作用。材料科学与工程A 2021,811,141063 [12] 12 B. Kim,S.G。Lee,D.W。 Kim,Y.H。Jo,J。Bae,S.S。Sohn,S。Lee。 添加Ni和Cu对奥氏体22mn-0.45c – 1al钢的低温 - 温度拉伸和夏比冲击特性的影响。 合金和化合物杂志2020,815,152407。 [13] C. Li,K。Li,J。Dong,J。Wang,Z。Shao。 FE-20/27MN-4AL-0.3C低磁性钢的机械行为和微观结构在房间和低温温度下。 材料科学与工程A 2021,809,140998。 [14] P.P. Poletskov,A.S。 Kuznetsova,D.YU。 Alekseev,对热卷高强度冷耐钢板产物的生产中世界一流发展的分析,其屈服强度为≥600n/mm2。 Nosov Magnitogorsk州立技术大学2020年的Vestnik。 卷。 18,第4页,pp。 32-38。 (在俄语)[15] L.M. [16] A.B.Jo,J。Bae,S.S。Sohn,S。Lee。添加Ni和Cu对奥氏体22mn-0.45c – 1al钢的低温 - 温度拉伸和夏比冲击特性的影响。合金和化合物杂志2020,815,152407。[13] C. Li,K。Li,J。Dong,J。Wang,Z。Shao。FE-20/27MN-4AL-0.3C低磁性钢的机械行为和微观结构在房间和低温温度下。材料科学与工程A 2021,809,140998。[14] P.P.Poletskov,A.S。 Kuznetsova,D.YU。 Alekseev,对热卷高强度冷耐钢板产物的生产中世界一流发展的分析,其屈服强度为≥600n/mm2。 Nosov Magnitogorsk州立技术大学2020年的Vestnik。 卷。 18,第4页,pp。 32-38。 (在俄语)[15] L.M. [16] A.B.Poletskov,A.S。 Kuznetsova,D.YU。Alekseev,对热卷高强度冷耐钢板产物的生产中世界一流发展的分析,其屈服强度为≥600n/mm2。Nosov Magnitogorsk州立技术大学2020年的Vestnik。卷。18,第4页,pp。32-38。(在俄语)[15] L.M.[16] A.B.Roncery,S。Weber,W。Theisen。 焊接塑料钢的焊接。 Scripta Metitialia 2012,66,997–1001。 Pereira,R.O。 桑托斯,学士学位 Carvalho,M.C。 Butuc,G。Vincze,L.P。Moreira。 评估第三代高强度钢的激光焊接性。 金属2019,9,1051。 [17] J. Verma,R.V。 太极拳。 焊接过程和条件对双工不锈钢焊接的微结构,机械性能和耐腐蚀性的影响 - 综述。 制造过程杂志2017,25,134–152。 [18] C.K.H. Martin-root。 复杂相和双相高强度钢的激光焊接 - 焊接对微结构和可高效性的影响。 Ph.D.论文,滑铁卢大学,加拿大安大略省滑铁卢,2020年。 [19] M. Rozanski,M。Morawiec,A。Grajcar,S。Stano。 修饰的复合相钢的双点激光焊接。 金属材料档案2016,第1卷。 61,pp。 1999–2008。 [20] V.I. Gorynin,M.I。 Olenin。 改善钢和焊接接头的冷耐药性的方法; Crism Prometey:俄罗斯圣彼得堡,2017年。 (在俄语)[21] C. Wang,X。Lin,L。Wang,S。Zhang,W。Huang。 通过选择性激光熔化制造的316L不锈钢的低温机械性能。 材料科学与工程A 2021,815,141317。 [22] M. Morawiec,A。Grajcar。 应用工程信2017,第1卷。 2,pp。Roncery,S。Weber,W。Theisen。焊接塑料钢的焊接。Scripta Metitialia 2012,66,997–1001。Pereira,R.O。 桑托斯,学士学位 Carvalho,M.C。 Butuc,G。Vincze,L.P。Moreira。 评估第三代高强度钢的激光焊接性。 金属2019,9,1051。 [17] J. Verma,R.V。 太极拳。 焊接过程和条件对双工不锈钢焊接的微结构,机械性能和耐腐蚀性的影响 - 综述。 制造过程杂志2017,25,134–152。 [18] C.K.H. Martin-root。 复杂相和双相高强度钢的激光焊接 - 焊接对微结构和可高效性的影响。 Ph.D.论文,滑铁卢大学,加拿大安大略省滑铁卢,2020年。 [19] M. Rozanski,M。Morawiec,A。Grajcar,S。Stano。 修饰的复合相钢的双点激光焊接。 金属材料档案2016,第1卷。 61,pp。 1999–2008。 [20] V.I. Gorynin,M.I。 Olenin。 改善钢和焊接接头的冷耐药性的方法; Crism Prometey:俄罗斯圣彼得堡,2017年。 (在俄语)[21] C. Wang,X。Lin,L。Wang,S。Zhang,W。Huang。 通过选择性激光熔化制造的316L不锈钢的低温机械性能。 材料科学与工程A 2021,815,141317。 [22] M. Morawiec,A。Grajcar。 应用工程信2017,第1卷。 2,pp。Pereira,R.O。桑托斯,学士学位Carvalho,M.C。 Butuc,G。Vincze,L.P。Moreira。 评估第三代高强度钢的激光焊接性。 金属2019,9,1051。 [17] J. Verma,R.V。 太极拳。 焊接过程和条件对双工不锈钢焊接的微结构,机械性能和耐腐蚀性的影响 - 综述。 制造过程杂志2017,25,134–152。 [18] C.K.H. Martin-root。 复杂相和双相高强度钢的激光焊接 - 焊接对微结构和可高效性的影响。 Ph.D.论文,滑铁卢大学,加拿大安大略省滑铁卢,2020年。 [19] M. Rozanski,M。Morawiec,A。Grajcar,S。Stano。 修饰的复合相钢的双点激光焊接。 金属材料档案2016,第1卷。 61,pp。 1999–2008。 [20] V.I. Gorynin,M.I。 Olenin。 改善钢和焊接接头的冷耐药性的方法; Crism Prometey:俄罗斯圣彼得堡,2017年。 (在俄语)[21] C. Wang,X。Lin,L。Wang,S。Zhang,W。Huang。 通过选择性激光熔化制造的316L不锈钢的低温机械性能。 材料科学与工程A 2021,815,141317。 [22] M. Morawiec,A。Grajcar。 应用工程信2017,第1卷。 2,pp。Carvalho,M.C。Butuc,G。Vincze,L.P。Moreira。 评估第三代高强度钢的激光焊接性。 金属2019,9,1051。 [17] J. Verma,R.V。 太极拳。 焊接过程和条件对双工不锈钢焊接的微结构,机械性能和耐腐蚀性的影响 - 综述。 制造过程杂志2017,25,134–152。 [18] C.K.H. Martin-root。 复杂相和双相高强度钢的激光焊接 - 焊接对微结构和可高效性的影响。 Ph.D.论文,滑铁卢大学,加拿大安大略省滑铁卢,2020年。 [19] M. Rozanski,M。Morawiec,A。Grajcar,S。Stano。 修饰的复合相钢的双点激光焊接。 金属材料档案2016,第1卷。 61,pp。 1999–2008。 [20] V.I. Gorynin,M.I。 Olenin。 改善钢和焊接接头的冷耐药性的方法; Crism Prometey:俄罗斯圣彼得堡,2017年。 (在俄语)[21] C. Wang,X。Lin,L。Wang,S。Zhang,W。Huang。 通过选择性激光熔化制造的316L不锈钢的低温机械性能。 材料科学与工程A 2021,815,141317。 [22] M. Morawiec,A。Grajcar。 应用工程信2017,第1卷。 2,pp。Butuc,G。Vincze,L.P。Moreira。评估第三代高强度钢的激光焊接性。金属2019,9,1051。[17] J. Verma,R.V。太极拳。焊接过程和条件对双工不锈钢焊接的微结构,机械性能和耐腐蚀性的影响 - 综述。制造过程杂志2017,25,134–152。[18] C.K.H.Martin-root。 复杂相和双相高强度钢的激光焊接 - 焊接对微结构和可高效性的影响。 Ph.D.论文,滑铁卢大学,加拿大安大略省滑铁卢,2020年。 [19] M. Rozanski,M。Morawiec,A。Grajcar,S。Stano。 修饰的复合相钢的双点激光焊接。 金属材料档案2016,第1卷。 61,pp。 1999–2008。 [20] V.I. Gorynin,M.I。 Olenin。 改善钢和焊接接头的冷耐药性的方法; Crism Prometey:俄罗斯圣彼得堡,2017年。 (在俄语)[21] C. Wang,X。Lin,L。Wang,S。Zhang,W。Huang。 通过选择性激光熔化制造的316L不锈钢的低温机械性能。 材料科学与工程A 2021,815,141317。 [22] M. Morawiec,A。Grajcar。 应用工程信2017,第1卷。 2,pp。Martin-root。复杂相和双相高强度钢的激光焊接 - 焊接对微结构和可高效性的影响。Ph.D.论文,滑铁卢大学,加拿大安大略省滑铁卢,2020年。 [19] M. Rozanski,M。Morawiec,A。Grajcar,S。Stano。 修饰的复合相钢的双点激光焊接。 金属材料档案2016,第1卷。 61,pp。 1999–2008。 [20] V.I. Gorynin,M.I。 Olenin。 改善钢和焊接接头的冷耐药性的方法; Crism Prometey:俄罗斯圣彼得堡,2017年。 (在俄语)[21] C. Wang,X。Lin,L。Wang,S。Zhang,W。Huang。 通过选择性激光熔化制造的316L不锈钢的低温机械性能。 材料科学与工程A 2021,815,141317。 [22] M. Morawiec,A。Grajcar。 应用工程信2017,第1卷。 2,pp。Ph.D.论文,滑铁卢大学,加拿大安大略省滑铁卢,2020年。[19] M. Rozanski,M。Morawiec,A。Grajcar,S。Stano。修饰的复合相钢的双点激光焊接。金属材料档案2016,第1卷。61,pp。1999–2008。[20] V.I.Gorynin,M.I。 Olenin。 改善钢和焊接接头的冷耐药性的方法; Crism Prometey:俄罗斯圣彼得堡,2017年。 (在俄语)[21] C. Wang,X。Lin,L。Wang,S。Zhang,W。Huang。 通过选择性激光熔化制造的316L不锈钢的低温机械性能。 材料科学与工程A 2021,815,141317。 [22] M. Morawiec,A。Grajcar。 应用工程信2017,第1卷。 2,pp。Gorynin,M.I。Olenin。 改善钢和焊接接头的冷耐药性的方法; Crism Prometey:俄罗斯圣彼得堡,2017年。 (在俄语)[21] C. Wang,X。Lin,L。Wang,S。Zhang,W。Huang。 通过选择性激光熔化制造的316L不锈钢的低温机械性能。 材料科学与工程A 2021,815,141317。 [22] M. Morawiec,A。Grajcar。 应用工程信2017,第1卷。 2,pp。Olenin。改善钢和焊接接头的冷耐药性的方法; Crism Prometey:俄罗斯圣彼得堡,2017年。(在俄语)[21] C. Wang,X。Lin,L。Wang,S。Zhang,W。Huang。通过选择性激光熔化制造的316L不锈钢的低温机械性能。材料科学与工程A 2021,815,141317。[22] M. Morawiec,A。Grajcar。应用工程信2017,第1卷。2,pp。多相钢对汽车行业的焊接性的冶金方面。38–42。[23] J. Chen,Z.-Y.刘。低碳5MN – 5NI钢的强度和低温冲击韧性的结合。合金和化合物杂志2020,837,155484。[24] H. Wang,L。Meng,Q。Luo,C。Sun,G。Li,X。Wan。通过焊接热循环的高MN奥氏体钢的高温韧性:晶界演化的作用。材料科学与工程A 2020,第1卷。788,139573。[25] J.C. Lippold,D.J。Kotecki。 焊接冶金和不锈钢的焊接性,第一版。 ;威利:美国新泽西州霍博肯,2005年[26] A. Kalhor,M。Soleimani,H。Mirzadeh,V。Uthaisangsuk。 对双相钢的机械和腐蚀特性的最新进展综述。 民用机械工程档案2020,第1卷。 20,85。 [27] T. Nanda,V。Singh,V。Singh,A。Chakraborty,S。Sharma。 高级高强度钢的第三代:处理路线和属性。 机械工程机构的会议记录,第L部分:材料杂志:设计与应用2016,第1卷。 233,pp。 209–238。 [28] H.L. Groth,J。Pilhagen,R。Vishnu,J.Y。 琼森。 在低温下使用双链不锈钢。 提出韧性温度厚度数据的新方法。 在2017年9月18日至19日,英国伦敦的第五届国际不锈钢国际专家研讨会论文集; pp。 1–8。Kotecki。焊接冶金和不锈钢的焊接性,第一版。;威利:美国新泽西州霍博肯,2005年[26] A. Kalhor,M。Soleimani,H。Mirzadeh,V。Uthaisangsuk。对双相钢的机械和腐蚀特性的最新进展综述。民用机械工程档案2020,第1卷。20,85。[27] T. Nanda,V。Singh,V。Singh,A。Chakraborty,S。Sharma。高级高强度钢的第三代:处理路线和属性。机械工程机构的会议记录,第L部分:材料杂志:设计与应用2016,第1卷。233,pp。209–238。[28] H.L.Groth,J。Pilhagen,R。Vishnu,J.Y。 琼森。 在低温下使用双链不锈钢。 提出韧性温度厚度数据的新方法。 在2017年9月18日至19日,英国伦敦的第五届国际不锈钢国际专家研讨会论文集; pp。 1–8。Groth,J。Pilhagen,R。Vishnu,J.Y。琼森。在低温下使用双链不锈钢。提出韧性温度厚度数据的新方法。在2017年9月18日至19日,英国伦敦的第五届国际不锈钢国际专家研讨会论文集; pp。1–8。[29] N. Fonstein。高级高强度板钢;施普林格:柏林/海德堡,德国,2015年; pp。193–195。[30] M.Y.demeri。高级高强度钢。科学,技术和应用; ASM国际:俄亥俄州材料公园,
[1] ASTM International,《金属定向能量沉积标准指南》。2016 年,第 1-22 页。[2] S. Sreekanth,“激光定向能量沉积:工艺参数和热处理的影响”,University West,2020 年。[3] RM Mahamood,《金属和合金的激光金属沉积》。2018 年。[4] S. Sreekanth、E. Ghassemali、K. Hurtig 和 S. Joshi,“直接能量沉积工艺参数的影响”,《金属》,第 10 卷,第 1 期,第 96 页,2020 年。[5] A. Steponaviciute、A. Selskiene、K. Stravinskas、S. Borodinas 和 G. Mordas,“17-4 PH 不锈钢作为高分辨率激光金属沉积材料”,Mater. Today Proc.,第 10 卷,第 1 期,第 96 页,2020 年。 52,第 2268-2272 页,2021 年,doi:10.1016/j.matpr.2021.08.143。[6] AA Adeyemi、E. Akinlabi、RM Mahamood、KO Sanusi、S. Pityana 和 M. Tlotleng,“激光功率对激光金属沉积 17-4 ph 不锈钢微观结构的影响”,IOP Conf. Ser. Mater. Sci. Eng.,第 225 卷,第 012028 页,2017 年,doi:10.1088/1757-899x/225/1/012028。 [7] J. Tacq.,“17-4PH 钢的 L-PBF 和热处理”,2021 年。 [8] A. Ziewiec、A. Zielińska-Lipiec 和 E. Tasak,“热处理后 X5CrNiCuNb 16-4(17-4 PH)马氏体不锈钢焊接接头的微观结构”,Arch. Metall. Mater.,第 59 卷,第 3 期,第 965-970 页,2014 年,doi:10.2478/amm-2014-0162。 [9] Y. Sun、RJ Hebert 和 M. Aindow,“热处理对增材制造和锻造 17-4PH 不锈钢微观结构演变的影响”,Mater. Des.,第 59 卷,第 3 期,第 965-970 页,2014 年156,第 429-440 页,2018 年,doi:10.1016/j.matdes.2018.07.015。[10] K. Li 等人,“均质化对激光粉末床熔合制备的 17-4 PH 不锈钢沉淀行为和强化的影响”,Addit. Manuf.,第 52 卷,第 1-26 页,2022 年,doi:10.1016/j.addma.2022.102672。
钻石的太空格是以面部为中心的立方体。钻石结构的原始基础在坐标(000)和(1/4 1/4 1/4)上具有两个与FCC晶格的点相关的原子。如果将细胞作为常规立方体,基础由八个原子组成。(a)找到此基础的结构因子。(b)找到S的零,并表明钻石结构的允许反射满足V 1 + V 2 + V 3 = 4 N,其中所有索引均匀,n是任何整数,否则所有索引都是奇数。(请注意,H,K,L可能是为V 1,V 2,V 3编写的。)
摘要 - 焊料疲劳故障是限制微电子流量芯片包装可靠性的主要磨损故障机制之一。焊料疲劳故障发生在裂缝启动并随后通过整个焊接接头传播,从而导致电气开放。焊接关节内的裂纹引发和支撑性是由压力的循环施加引起的,这通常是由于暴露于温度周期所引起的。了解产品使用过程中的热循环与用于测试的加速热循环之间的关系对于预测设备的可靠性至关重要。MIL-PRF-38535是用于综合电路(微电路)制造的指导航空航天和高可靠性的规格,该制造能够列出制造业,合格和认证要求,以在国防逻辑机构(DLA)的(DLA)合格列表(QM)(QML)列表中列出。该standard于2022年11月发布的修订版,首次包括在制造QML平流芯片产品中使用无铅焊合金和有机基质。 因此,对于无铅的平流芯片组件的焊料疲劳,人们非常需要了解实质性的物理(POF)。 本文删除了如何使用有限的元素建模来预测平流芯片包装组件的焊料疲劳。 作者的杠杆疲劳寿命是针对不同流量芯片雏菊链套件配置的,以及疲劳的生命定义并可以在发表的论文中使用。修订版,首次包括在制造QML平流芯片产品中使用无铅焊合金和有机基质。因此,对于无铅的平流芯片组件的焊料疲劳,人们非常需要了解实质性的物理(POF)。本文删除了如何使用有限的元素建模来预测平流芯片包装组件的焊料疲劳。作者的杠杆疲劳寿命是针对不同流量芯片雏菊链套件配置的,以及疲劳的生命定义并可以在发表的论文中使用。然后,作者使用所得的无铅焊料疲劳模型来进行参数研究,以研究不同的模具大小,填充材料属性和包装底物材料的影响。在共晶SN/PB和无铅疲劳寿命预测之间进行了比较。此外,作者还展示了如何将焊料疲劳预测用于使用条件,以便对平流芯片套件组件进行可靠性评估。这最终导致更好地理解焊料合金的影响以及材料选择对航空航天和高可靠性产品的任务生活的影响,这些产品属于MIL-PRF-38535修订中引入的更改M.
将残余应力效应纳入塑性、断裂和疲劳裂纹扩展模型以评估铝制船舶结构的可靠性 1.0 目标。 1.1 本项目的目标是开发一种经过实验校准和验证的计算工具,该工具可准确预测结构铝合金在残余应力影响下因疲劳和延性断裂而产生的塑性响应和失效。该数值工具不仅可用于铝制船舶结构的可靠性评估和生存力分析,还可用于制定船舶设计和优化的断裂控制计划。 2.0 背景。 2.1 近年来,计算力学的快速发展使工程师能够分析复杂的船舶结构、评估结构可靠性和优化结构设计。因此,对更精确的材料模型的需求变得越来越明显;特别是当最小化设计裕度成为重量优化或延长寿命的方法时。 2.2 船舶结构可能会受到大海或事故(如碰撞和搁浅)造成的极端载荷条件的影响。军用舰船在作战中还要承受严峻的载荷,在极端条件下,舰船结构可能会发生较大的塑性变形,这种变形可能是单调的,也可能是循环的,从而导致结构失效。2.3 到目前为止,绝大多数结构分析采用经典的 J 2 塑性理论来描述金属合金的塑性响应,该理论假设静水应力和应力偏量第三不变量不影响塑性行为。然而,越来越多的实验证据表明,J 2 塑性理论中的假设对许多材料来说是无效的。Gao 等(2009)注意到 5083 铝合金的塑性响应与应力状态有关,并提出了 I 1 -J 2 -J 3 塑性模型。2.4 等效断裂应变通常用作延性断裂准则,人们普遍认为它的值取决于应力三轴性(Johnson and Cook,1985)。然而,最近的研究表明,单独的应力三轴性不足以表征应力状态对延性断裂的影响。Gao 等人(2009)开发了一种应力状态相关的延性断裂模型,其中失效等效应变表示为应力三轴性和应力偏差的第三不变量的函数,并且针对 ABS Grade DH36 钢校准了该断裂模型。2.5 Gao 团队(Jiang, Gao and Srivatsan;2009)的先前研究开发了一种不可逆内聚区模型来模拟疲劳裂纹扩展。该模型已成功针对 7075 铝合金进行校准,并预测了紧凑拉伸剪切试样中的疲劳裂纹扩展。数值结果捕捉了加载模式和过载对疲劳裂纹扩展速率的影响。2.6 焊接接头广泛应用于船舶结构。然而,它们给建模和分析带来了很大的复杂性,例如母材、焊件和热影响区的材料行为和特性不同;焊趾处的几何不连续性(这会改变应力分布并导致焊趾处出现高应力)和残余应力。这些因素加剧了施加在底层材料上的局部应力,降低了不考虑此类影响的材料模型的准确性。焊缝通常不会在结构尺度上以这种详细程度建模,但由于这些原因,故障通常会在这个区域开始
机械工程工程数学线性代数:矩阵代数,线性方程系统,特征值和特征向量。微积分:单个变量,极限,连续性和不同性,平均值定理,不确定形式的功能;评估确定和不当积分;双重和三个积分;部分衍生物,总导数,泰勒序列(一个和两个变量),最大值和最小值,傅立叶序列;梯度,差异和卷曲,矢量身份,方向衍生物,线,表面和体积积分,高斯的应用,Stokes和Green定理。微分方程:一阶方程(线性和非线性);具有恒定系数的高阶线性微分方程; Euler-Cauchy方程;初始和边界价值问题;拉普拉斯转变;热,波和拉普拉斯方程的解决方案。复杂变量:分析函数; Cauchy-Riemann方程;库奇的整体定理和整体公式;泰勒和洛朗系列。概率和统计:概率的定义,采样定理,条件概率;卑鄙,中位数,模式和标准偏差;随机变量,二项式,泊松和正常分布。数值方法:线性和非线性代数方程的数值解;通过梯形和辛普森的规则进行集成;微分方程的单步和多步法。应用力学和设计工程机制:自由图和平衡;摩擦及其应用,包括滚动摩擦,Belt-Pulley,刹车,离合器,螺丝千斤顶,楔子,车辆等。;桁架和框架;虚拟工作;平面运动中刚体的运动学和动力学;冲动和动量(线性和角度)以及能量配方;拉格朗日方程。材料力学:应力和应变,弹性常数,泊松比; Mohr的圆圈,用于平面应力和平面应变;薄缸;剪切力和弯矩图;弯曲和剪切应力;剪切中心的概念;梁的挠度;圆形轴的扭转;欧拉的专栏理论;能量方法;热应力;应变仪和玫瑰花结;通过通用测试机对材料进行测试;测试硬度和影响力。机器理论:平面机制的位移,速度和加速度分析;链接的动态分析;凸轮;齿轮和齿轮火车;飞轮和州长;往复和旋转质量的平衡;陀螺仪。振动:单个自由系统的自由和强迫振动,阻尼的效果;振动隔离;谐振;轴的关键速度。机器设计:用于静态和动态加载的设计;失败理论;疲劳强度和S-N图;机器元素的设计原理,例如螺栓,铆接和焊接接头;轴,齿轮,滚动和滑动接触轴承,刹车和离合器,弹簧。流体力学和热科学流体力学:流体特性;流体静态,淹没物体的力,浮动物体的稳定性;质量,动量和能量的控制体积分析;流体加速度;连续性和动量的微分方程;伯努利方程;维度分析;不可压缩的流体,边界层,基本湍流,流过管道,管道损失,弯曲和配件的粘性流动;可压缩流体流量的基础。传热:传热模式;一维热传导,抗性概念和电类比喻,通过鳍的传热;不稳定的热传导,集总参数系统,Heisler的图表;热边界层,自由和强制对流传热中的无量纲参数,扁平板上流动和通过管道的传热相关性,湍流的影响;热交换器性能,LMTD和NTU方法;辐射传热,Stefanboltzmann定律,WIEN的位移定律,黑色和灰色表面,视图因素,辐射网络分析热力学:热力学系统和过程;纯物质的特性,理想和真实气体的行为;零和热力学的第一定律,在各种过程中的工作和热量计算;热力学的第二定律;热力学特性图表和表,可用性和不可逆性;热力学关系。
S.J.Muckett,M.E。 Warwick和P.E. 戴维斯编辑注:最初出版为K. Parker,《镀金和表面饰面》,73(1),44-51(1986),该论文获得了1987年AESF金牌的最佳纸张金牌,该纸在1986年发表在电镀和表面上。。。Muckett,M.E。Warwick和P.E. 戴维斯编辑注:最初出版为K. Parker,《镀金和表面饰面》,73(1),44-51(1986),该论文获得了1987年AESF金牌的最佳纸张金牌,该纸在1986年发表在电镀和表面上。。Warwick和P.E.戴维斯编辑注:最初出版为K. Parker,《镀金和表面饰面》,73(1),44-51(1986),该论文获得了1987年AESF金牌的最佳纸张金牌,该纸在1986年发表在电镀和表面上。随着时间的流逝,已经发现含有PB的焊料存在有关毒性和健康的问题。尽管如此,从历史的角度来看,这里讨论的工作,方法和结果仍然很有价值。通过将样品在135或170°C下衰老,检查了混合微电源设备的抽象焊接导体接头。在金/铂厚膜导体上,锡铅和依赖铅焊组形成了金属间化合物。在铜导体上,依赖型焊料的反应较低,但观察到渗透到导体孔中。在钨导体上,两种焊料都形成了高磷脆性镍化合物,带有电镍和电镀金沉积物。在厚膜混合微型电子产业中,可以在陶瓷基板上应用各种金属化的饰面,以形成用于印刷电阻,导体和导体土地以进行设备附件的电路图案。1电路图案通常是由厚膜油墨的丝网印刷产生的,厚膜油墨通常由悬浮在有机车辆中的金属粉末和玻璃弗里特组成。当需要高包装密度时,多层电路可能更合适。系统如下:然后,将厚膜基板施加燃烧状态,该启动燃烧有机物,部分烧结金属颗粒,并允许玻璃薄片与下面的陶瓷层融合。可以通过在连续的厚膜金属化层之间合并一层玻璃介电。厚膜导体和离散电子设备之间的互连经常是通过以糊状或奶油形式将其印刷到位的焊料合金丝网制成的。焊接焊接从奶油中除去溶剂,激活通量,并融化焊料合金的颗粒以润湿要连接的表面。除了良好的润湿外,金属化成分还必须抵抗焊料的浸出。这些因素已获得了大量研究,并且可以从厚膜油墨的制造商那里获得数据。对于高度可靠性,例如在军事和航空航天应用中,通常需要进行剧烈的环境和机械测试以及极端的服务条件的模拟来评估组件的质量和完整性。热休克,温度循环,热老化(燃烧)和振动测试都可以在某种程度上进行。对厚膜导体制造的焊接接头的完整性可能会受到此类条件的不利影响。2焊料和导体金属化之间的固态扩散反应可能对导体对基础底物的粘附有害,尤其是在长时间长时间进行高温时。我们研究的目的是确定温度升高时热老化对厚膜导体/焊料界面固态扩散反应的影响。研究了三种焊料合金和三个被认为适用于高可靠性军事和航空航天应用的厚膜导体系统之间发生的冶金反应。选择了我们使用的厚膜导体以提供一系列冶金不同的研究系统,而无意在材料之间进行特定的比较。先前发表的研究旨在量化锡铅焊料和许多底物3-10之间的固态扩散反应速率与本报告中的数据进行比较。在燃烧条件下提供了许多厚膜杂交底物的实验材料样品。在每种情况下,对所讨论的特定产品都认为射击条件被认为是正常的。