瑞萨电子的四方扁平无引线 (QFN) 封装系列产品是一种相对较新的封装概念,目前正在快速发展。该封装系列包括通用版本 QFN,以及 TQFN、UTQFN 和 XQFN 等较薄版本。该系列的引线间距为 0.4 毫米及以上。四方扁平无引线的一个子集是双面类型(4 个侧面中只有 2 个有引线),其中包括 DFN、TDFN、UTDFN 和 XDFN 等版本。在本文档中,术语 QFN 代表所有系列选项。该系列具有多种优势,包括降低引线电感、小尺寸近芯片级封装、薄型和轻重量。它还使用周边 I/O 焊盘来简化 PCB 走线布线,而裸露的铜芯片焊盘技术可提供良好的热性能和电气性能。这些特性使 QFN 成为许多新应用的理想选择,这些应用对尺寸、重量以及热性能和电气性能都很重要。
垂直堆叠的三维集成电路 (3D IC) 中的芯片间电通信由芯片间微凸块实现。微凸块的电迁移可靠性对于了解基于 3D IC 的微电子系统的可靠性至关重要。本文报告了通过热压键合在两个芯片之间形成的 Cu-Sn-Cu 微凸块的电迁移可靠性的实验研究。双芯片 3D IC 组装在线键合陶瓷封装中,并在不同温度下的空气和氮气环境中进行电迁移测试。测量了微连接链和开尔文结构的故障寿命和平均故障时间 (MTTF)。结果表明,Cu-Sn 微连接的本征活化能介于 0.87 eV 和 1.02 eV 之间。基于故障分析,提出了可能的故障机制。这项研究的结果有望提高人们对 3D IC 中电迁移可靠性的根本理解,并促进基于 3D IC 的稳健可靠的微电子系统的开发。2014 Elsevier BV 保留所有权利。
使用各种悬臂探针针尖多次探测具有薄焊盘铝 (Al)(厚度小于 0.7µ)的 IC 键合焊盘。探针标记由具有各种针尖直径的实验性高强度探针卡创建。将探针针尖的有限元模型与探针标记擦洗长度相匹配,以更学术地了解随着探针参数的变化会发生什么。使用此模型进行模拟将有助于未来进行物理实验困难或成本高昂的情况。实验中的键合焊盘包括各种安森美半导体电路焊盘下 (CUP) 结构,该结构具有 Al 金属化和二氧化硅 (SiO 2 ) 互连,先前已证明与传统 IC 键合焊盘相比具有更强的抗开裂能力。随着未来产品的焊盘缩小,更小的球尺寸和键合接触面积是可取的,但这会加剧探针标记的任何不利影响,因为键合下方的相对面积百分比会增加。实验评估包括对各种探针标记范围内不同球直径的金 (Au) 球键合的键合拉力强度 (BPS) 和键合剪切力 (BS),以开始检查引线键合中惯常的“探针标记面积”最大限制的有效性。数据表明,大而深的探针标记确实会导致键合球提升失败,尤其是对于未优化的键合配方。看来探针标记深度,而不是面积,是键合可靠性中最不利的因素。在更受控制和“温和”的制造情况下,预计不会出现与探针标记键合相关的问题。
摘要 RoHS 法规的出台(该法规强制使用无铅焊料)以及 BGA 封装的日益普及,使得 ENIG 因其出色的长期可焊性和表面平整度而成为一种流行的表面处理选择。这种表面处理的缺陷之一是有可能在化学镀镍和浸金之间形成一层磷含量过高的层,这被称为黑焊盘缺陷。大多数现有文献表明,黑焊盘缺陷是由于 ENIG 工艺的浸金步骤中镍磷 (Ni-P) 层中的镍加速还原(腐蚀)造成的。黑焊盘缺陷可表现为 Ni-P 结节边界处的腐蚀尖峰,并可能发展为 Ni-P 顶部异常厚的高磷区域。与黑焊盘缺陷相关的一种故障机制是由于高磷区域的存在,下层 Ni-P 层中润湿良好的焊点发生脆性故障。在严重的情况下,黑焊盘缺陷会导致可焊性问题,并阻碍锡镍金属间化合物的形成,从而阻碍焊点的良好润湿。我们有机会研究了许多不同类型的黑焊盘案例,从严重到轻微,并且有大量的知识可以分享。本文将让读者对如何识别黑焊盘以及随后确定其严重程度有一个基本的了解。