Decomposition temperature : Not available pH : 5.5 – 8 pH solution concentration : 1 % Viscosity, kinematic : Not applicable Solubility : Water: Slightly soluble in water Partition coefficient n-octanol/water (Log Kow) : Not available Vapour pressure : Not available Vapour pressure at 50°C : Not available Density : 0.9 g/cm³ at 20 °C Relative density : Not available Relative vapour density at 20°C:不适用粒径:不可用
紫外纳秒激光退火 (LA) 是一种强大的工具,需要严格限制的加热和熔化。在半导体技术中,随着所提出的集成方案的复杂性不断增加,LA 的重要性也随之增加。优化 LA 工艺以及实验设计具有挑战性,尤其是当涉及具有各种形状和相的复杂 3D 纳米结构系统时。在这种情况下,需要对激光熔化进行可靠的模拟,以优化工艺参数并减少实验测试次数。这产生了虚拟实验设计 (DoE)。𝑆𝑖 1− 𝑥 𝐺𝑒 𝑥 合金如今因其与硅器件的兼容性而被使用,从而能够设计应变、载流子迁移率和带隙等特性。在这项工作中,用有限元法/相场方法模拟了松弛和应变𝑆𝑖 1− 𝑥 𝐺𝑒 𝑥 的激光熔化过程。具体来说,我们使用实验数据校准了合金结晶相和液相的介电函数。我们强调了重现不同聚集状态下空气与材料界面的精确反射率的重要性,以正确模拟该过程。我们间接发现了熔体硅锗光学行为的有趣特征。
摘要最近,已广泛研究了摩擦电纳米生成器(TENG)以开发柔性和可穿戴电子产品。在Teng修饰的各种方法中,熔化近场直接写作是制造固定液体Teng的新方法。在这里,将带有传统聚合物引入电纺PCL,以制造复合固体底层底层,然后选择水,二甲基酮和增益作为液体互动层。在本文中,比较了固体底物效应,温度梯度效应和液体底物效应。在本文中采用了Teng的独立模型,并且PCL-PI复合固体底层底层固体层产生的电荷比原始的底层高10倍以上,显示出高电荷产生能力融化近场直接直接的书面微纤维。此外,将讨论详细的调查,如何获得高电路电压和短路电流。
摘要:通过单个因子和正交测试获得了304L不锈钢的最佳SLM条件。结果表明,当激光输出功率为190 W时,最佳硬度(75 hrb)和相对密度(RD 99.24%)可以获得,扫描距离为0.09 mm,扫描速度为800 mm/s。鱼尺度的微观结构是均匀的,紧凑,最佳样品中有几个孔。细胞颗粒在熔融池的边缘附近随机分布,并形成了一些优选的颗粒柱晶体结构。在细胞结构之间观察到大量的纠缠位错,形成位错簇。球形纳米原子,富含Si,Mn和O。样品的机械性能是高度各向异性的,并且在拉伸裂缝处有明显的颈部和延展性。
摘要:通过直接沉积制备的双金属结构由于异种金属的组织和性能突然变化而存在缺陷。激光金属沉积(LMD)-电弧增材制造(WAAM)工艺可以通过沉积功能梯度材料(FGM)层(例如使用LMD的薄中间层)来缓解两种不同材料之间的缺陷,并可用于使用WAAM以较高的沉积速率和相对较低的成本制备双金属结构。本研究进行了LMD-WAAM工艺,并研究了制备的IN625-SUS304L双金属结构的微观组织。LMD-WAAM样品的FGM区的微观组织主要为细小的等轴枝晶形貌。相反,WAAM区构成了粗大的柱状枝晶形貌。LMD-WAAM样品的主要合金元素的成分随着沉积层高度而逐渐变化。 LMD-WAAM 样品的显微硬度随 Inconel 含量的增加而增加。对于 LMD-WAAM 样品,断裂发生在 25% IN625 和 0% IN625 之间的界面附近;对于 WAAM 样品,最终断裂发生在界面附近的 SUS304L 中。LMD-WAAM 样品的拉伸强度与激光功率成反比。结果表明,LMD-WAAM 样品的拉伸强度比仅使用 WAAM 制造的样品高 8%。
摘要:激光粉末床熔合(LPBF)是一种很有前途的金属材料增材制造工艺,其优点是产品设计灵活,可制造各种机械零件。然而,由于金属零件是逐层堆叠的,因此 LPBF 制备的材料具有各向异性的微观结构,这对于材料设计非常重要。本研究从构建方向探究了 LPBF 制备的 18Ni300 马氏体时效钢(MS)的耐腐蚀性能,并研究了热处理和时效对微观结构和耐腐蚀性能的影响。LPBF 中快速冷却形成的亚晶胞提高了 MS 的耐腐蚀性能。因此,构建后的 MS 具有最高的耐腐蚀性能。然而,热处理或时效会消除亚晶胞,导致耐腐蚀性能下降。对于 18Ni300 MS,圆柱形亚晶胞形成并沿着散热方向排列,与建造方向相似;因此,在建造状态的 MS 中发现明显的耐腐蚀各向异性。然而,这种耐腐蚀各向异性会因热处理和时效而减弱,从而消除亚晶胞。
摘要 采用选区激光熔化(SLM)成形技术制备Inconel 718合金并进行不同的退火处理。利用光学显微镜、扫描电子显微镜、电子背散射衍射和MTS试验机研究了不同退火处理下选区激光熔化成形的Inconel 718合金的组织、力学性能和疲劳性能。结果表明:均匀化和双时效退火后的Inconel 718合金组织变化最为明显,合金组织以再结晶组织为主,组织中含有大量退火孪晶,晶界平整。选区激光熔化成形的Inconel 718合金经不同的退火处理后屈服强度、抗拉强度和显微硬度均有较大提高,而断后伸长率明显下降。 Inconel 718合金经双重时效退火和固溶双重时效退火后的疲劳性能略有提高,而均匀双重时效退火后的疲劳性能略有下降。
图1 NiTi粉末的SEM/EDS表征:(a)粉末形貌,(b)粉末横截面和EDS取样点位置,(c)Ni元素分布,(d)Ti元素分布和(e)四个点的EDS峰值
1 华南理工大学机电与汽车工程学院,广州 510641;mewdlaser@scut.edu.cn (DW); 202020100649@mail.scut.edu.cn (HW); xjchan001@163.com (XC) 2 宁波大学冲击与安全工程教育部实验室,宁波 315211 3 攀钢集团研究院有限公司钒钛资源综合利用国家重点实验室,攀枝花 617000;ludong_1786@163.com (DL); cgvermouth2022@163.com (XL) 4 四川省先进金属材料增材制造工程技术研究中心,成都先进金属材料产业技术研究院有限公司,成都 610300,中国 * 通讯作者:liuyang1@nbu.edu.cn (YL); cjhan@scut.edu.cn (CH)
1 伊拉克大学工程学院电气工程系,巴格达 10071,伊拉克;farqad_alani@yahoo.com 2 加尔米安大学教育学院物理系,卡拉尔 46021,伊拉克;hayder.i.mohammad@garmian.edu.krd 3 巴格达大学能源工程系,巴格达 10071,伊拉克;hussein.alnajjar@coeng.uobaghdad.edu.iq (HMTA-N.);jasim@siu.edu (JMM) 4 跨学科研究中心,药理学系,萨维塔医学和技术科学研究所,萨维塔牙科学院,萨维塔大学,钦奈 600001,印度; Lakshmi@saveetha.com 5 放射学和医学成像系,应用医学科学学院,萨坦·本·阿卜杜勒阿齐兹王子大学,Al-Kharj 11942,沙特阿拉伯;m.alhassen@psau.edu.sa 6 堪培拉大学健康学院,堪培拉,ACT 2600,澳大利亚 7 库姆理工大学机械工程系,库姆 3718146645,伊朗;ebrahimnataj.m@qut.ac.ir 8 加拿大自然资源部 CanmetENERGY 研究中心,加拿大安大略省渥太华 K1A 1M1 9 食物链可持续能源利用中心,能源未来研究所,伦敦布鲁内尔大学,Kingston Lane,Uxbridge,Middlesex UB8 3PH,英国pouyan.talebizadehsardari@brunel.ac.uk (PT)