摘要:激光熔化沉积 (LMD) 近来因生产近净形零件和修复磨损部件而受到工业领域的关注。然而,LMD 在熔池动力学和流体流动分析方面仍未得到探索。在本研究中,计算流体动力学 (CFD) 和分析模型已经开发出来。流体体积和离散元建模的概念用于计算流体动力学 (CFD) 模拟。此外,设计了一个简化的数学模型,用于单层沉积,其中激光束衰减比是 LMD 工艺固有的。这两个模型都通过 Ti6Al4V 合金在 Ti6Al4V 基体上的单道沉积实验结果进行了验证。实验和建模之间有密切的相关性,只有一些偏差。此外,还设计了一种跟踪熔体流动和相关力的机制。模拟显示,由于同轴添加粉末颗粒,LMD 仅涉及传导模式熔体流动。在激光束前方,熔池呈现顺时针旋涡,而在激光点位置后方,则呈现逆时针旋涡。打印过程中,一些部分熔化的颗粒试图进入熔池,导致熔体材料内发生飞溅。在层沉积后确定了熔化状态、糊状区域(固体+液体混合物)和凝固区域。这项研究深入了解了 LMD 打印背景下的熔体流动动力学。
摘要:为了了解选择性激光熔化 (SLM) 工艺背后的物理行为,人们广泛采用了数值方法进行模拟。宏观尺度的数值模拟可以研究输入参数(激光功率、扫描速度、粉末层厚度等)与输出结果(变形、残余应力等)之间的关系。然而,有限元法求解的宏观热模型无法正确预测熔池深度,因为它们忽略了熔池中流体流动的影响,尤其是在存在深穿透的情况下。为了弥补这一限制,提出了一种易于实现的温度相关热源。该热源可以在模拟过程中调整其参数,以补偿与流体流动和小孔相关的这些被忽略的热效应,一旦关注点的温度稳定,热源的参数就会固定下来。与传统的热源模型相反,所提出的热源的参数不需要针对每个工艺参数进行实验校准。通过将所提模型的结果与各向异性热导率方法和实验测量的结果进行比较,验证了所提模型的有效性。
表2。晶格和相对密度的平均值。结构I II II III III尺寸[mm] 4 7 10 4 7 10 4 7 10 M Latt [G] 5.832 3.139 2.018 12.016 7.512 6.806 10.298 9.697 9.697 8.887 8.887 /S 24.615 V * [mm 3] 1319.532 710.180 456.661 2718.602 1699.622 1539.869 2329.839 2193.841 2010.583
镍基高温合金GH3536广泛应用于航空航天工业,具有良好的强度和抗高温氧化性能。本研究采用选区激光熔化 (SLM) 工艺制备GH3536试件,并进行热处理 (HT),研究了SLM和SLM-HT试件的微观组织、残余应力、拉伸强度和硬度。实验结果表明,由于快速冷却,SLM试件处于过饱和固溶状态,残余拉应力沿制备方向周期性地存在于亚表面。热处理后,富钼碳化物从基体中析出,降低了固溶程度。此外,由于热处理,SLM引起的残余拉应力转化为压应力,亚表面残余应力的周期性分布消失。研究结果表明,热处理抑制了SLM试件的固溶强化和晶界强化,导致硬度和屈服强度降低,断裂伸长率增加53%。本研究可为SLM成形GH3536镍基高温合金的应用提供指导。
a 帕多瓦大学工程与管理系,Stradella San Nicola 3, 36100 Vicenza(意大利) b 挪威科技大学工程设计与材料系,Richard Birkelands vei 2b, 7491, Trondheim(挪威) * 通讯作者:paolo.ferro@unipd.it 摘要
对于这两项挑战,工业 4.0 中的大数据和人工智能 (AI) 等技术和学科的结合,使得拥有强大的预测、探索性分析和描述性分析平台成为可能。如今,钢铁生产主要通过两种途径进行:高炉和电弧炉 (EAF)。废钢和直接还原铁 (DRI) 的混合物用于生产工业用钢,然后制成热轧板坯。在 EAF 工艺过程中,废钢和 DRI 的混合物被熔化,产生温度高达 1,630ºC 的钢水。电能和放热反应产生的能量用于进行这种熔化。与许多批量生产过程一样,提高生产率同时降低能耗对于降低运营成本至关重要,因此,控制 EAF 工艺每个阶段的温度等工艺变量在工艺控制中起着重要作用。
©作者,由EDP Sciences出版。这是根据Creative Commons Attribution许可证条款分发的开放访问文章4.0(http://creativecommons.org/licenses/4.0/)。
对于固/液相变,相变材料 (PCM) 可细分为两大类:无机物质和有机物质。7 无机物质包括盐水合物、盐、金属和合金,而有机物质包括石蜡、非石蜡和多元醇。有机非石蜡包括多种物质,如脂肪酸。此外,无机和/或有机物质的共晶混合物也可用作 PCM。8 大量有机和无机物质的熔点在技术相关范围内,且熔化焓较大。然而,除了具有合适的熔点外,大多数 PCM 都不符合合适存储介质的标准 9,因为它们的熔化焓太低、具有腐蚀性或价格太贵。Zalba 等人最近对合适的 PCM 进行了概述。10 在本研究中,我们重点关注盐水合物。与石蜡和脂肪酸类似,它们的熔化温度在 0°C 至 100°C 之间。脂肪酸被排除在外,因为它们的价格比石蜡高出三倍。8 与石蜡相比,盐水合物有几个优点 11 :
Ti-Mo-TiC 金属基复合材料的选择性激光熔化工艺优化 Bey Vrancken a,b、Sasan Dadbakhsh c,d、Raya Mertens c、Kim Vanmeensel a、Jef Vleugels a、Shoufeng Yang c、Jean-Pierre Kruth (1) ca 比利时鲁汶天主教大学材料工程系 b 美国加利福尼亚州利弗莫尔劳伦斯利弗莫尔国家实验室 c 比利时鲁汶天主教大学机械工程系 PMA、法兰德斯制造商成员 d 瑞典斯德哥尔摩皇家理工学院生产工程系 采用选择性激光熔化 (SLM) 加工 CP Ti、6.5 wt% Mo 和 3.5 wt% Mo 2 C 粉末混合物。优化工艺参数以获得全密度、无裂纹的零件。在原位分解 Mo 2 C 以利于形成 TiC 之后,该材料由均匀分散在 β-(Ti,Mo) 基质中的亚微米级 TiC 薄片组成,硬度高达 550 HV,压缩屈服应力为 1164 ± 37 MPa。可以通过在高密度加工窗口内改变工艺参数以及通过后处理热处理来调整微观结构和机械性能。选择性激光熔化 (SLM)、金属基复合材料、钛
摘要 高 Jc 镍基高温合金在航空航天、海洋、核能和化学工业中得到广泛应用,这些工业领域需要具有出色的抗腐蚀和抗氧化性能、优异的机械性能和出色的高温性能。然而,由于这些合金的化学性质复杂,基于选择性激光熔化 (SLM) 的高 Jc 镍基高温合金的增材制造 (AM) 面临重大挑战。这些材料具有多种合金元素和较高的铝+钛含量,当通过 SLM 固结时会形成各种二次相,严重影响可加工性,导致裂纹的形成。本综述的目的是总结迄今为止在高 Jc 镍基高温合金 SLM 方面取得的进展,特别强调阐明该合金系统中加工、微观结构和性能之间的关系。关键词:高 Jc 镍基高温合金、增材制造、选择性激光熔化 (SLM)、加工、微观结构、力学性能