1 华南理工大学机电与汽车工程学院,广州 510641;mewdlaser@scut.edu.cn (DW); 202020100649@mail.scut.edu.cn (HW); xjchan001@163.com (XC) 2 宁波大学冲击与安全工程教育部实验室,宁波 315211 3 攀钢集团研究院有限公司钒钛资源综合利用国家重点实验室,攀枝花 617000;ludong_1786@163.com (DL); cgvermouth2022@163.com (XL) 4 四川省先进金属材料增材制造工程技术研究中心,成都先进金属材料产业技术研究院有限公司,成都 610300,中国 * 通讯作者:liuyang1@nbu.edu.cn (YL); cjhan@scut.edu.cn (CH)
摘要:激光粉末床熔合(LPBF)是一种很有前途的金属材料增材制造工艺,其优点是产品设计灵活,可制造各种机械零件。然而,由于金属零件是逐层堆叠的,因此 LPBF 制备的材料具有各向异性的微观结构,这对于材料设计非常重要。本研究从构建方向探究了 LPBF 制备的 18Ni300 马氏体时效钢(MS)的耐腐蚀性能,并研究了热处理和时效对微观结构和耐腐蚀性能的影响。LPBF 中快速冷却形成的亚晶胞提高了 MS 的耐腐蚀性能。因此,构建后的 MS 具有最高的耐腐蚀性能。然而,热处理或时效会消除亚晶胞,导致耐腐蚀性能下降。对于 18Ni300 MS,圆柱形亚晶胞形成并沿着散热方向排列,与建造方向相似;因此,在建造状态的 MS 中发现明显的耐腐蚀各向异性。然而,这种耐腐蚀各向异性会因热处理和时效而减弱,从而消除亚晶胞。
电子束熔化(EBM)metni:electorne束熔化是一个3D制造过程,其中金属粉末被高能电子束熔化。电子beama通过将整个层的整个粉末床加热到最佳的环境温度Spesifor来融化材料。结果,由EBM过程产生的零件几乎没有残留应力,并且具有最佳的微结构。借助这种方法,可以生产高密度金属零件,并且逐层生产允许使用晶格刺激性制造拓扑优化的,减轻的零件。
12. 赞助机构名称和地址 船舶结构委员会 美国海岸警卫队 (G-MSE/SSC) 2100 Second Street, SW Washington, DC 20593 14. 赞助机构代码 GM 15. 补充说明 由船舶结构委员会赞助。由其成员机构共同资助。 16. 摘要 本研究的目的是开发通过摩擦搅拌焊接制造的 5000 系列和 6000 系列铝加筋板结构的机械屈曲破坏试验数据库,并将这些结构与通过熔化焊接制造的类似铝板在焊接引起的初始缺陷和极限抗压强度性能方面进行比较。讨论了与熔化焊接和摩擦搅拌焊接程序相关的趋势或优势。以下是这些讨论的摘要。 • 发现摩擦搅拌对接焊接铝合金的屈服强度和极限拉伸强度相当于甚至优于熔化焊接铝合金。 • 搅拌摩擦焊接引起的初始缺陷往往比熔化焊接引起的缺陷小。因此,搅拌摩擦焊接工艺在这方面的优势显而易见。• 搅拌摩擦焊接铝结构的极限强度性能比熔化焊接铝结构高 10-20%。这意味着,只要能防止分层,搅拌摩擦焊接工艺在极限抗压强度性能方面肯定优于熔化焊接工艺。• 然而,所有搅拌摩擦焊接测试结构在达到极限强度之后甚至之前都在焊接区域出现了分层。这表明,熔化焊接工艺在焊接区域的抗压强度性能方面优于搅拌摩擦焊接工艺。• 再次证实,非线性有限元法计算在很大程度上取决于所应用的结构建模技术。 17. 关键词 铝加筋板结构,极限强度,搅拌摩擦焊,熔化焊,焊接引起的初始缺陷,屈曲破坏试验,非线性有限元法计算
了解电热 SiC 功率 Mosfet 在短路等极端异常操作中的行为是认证的主要需求,尤其是对于关键或长寿命应用。但模拟电子元件中的短路非常困难,因为我们需要一个完全电热的多物理模型。我们还需要模拟顶部铝电极的熔化。我们使用“表观热容量”方法来模拟这种熔化,该方法考虑了潜热和熔化过程中所需的吸收能量。因此,本文首次提出了一个数值有限元模型,该模型在 2D 中完全模拟了 SiC 功率晶体管在短路状态下的动态电热行为。与现有的 1D 模型相比,该模型的几何精度提供了显着的附加值。
速度约为 70 cm3/h,构建体积限制为 400×400×400 mm3。SEBM 工艺与 SLM 类似,不同之处在于,SEBM 使用电子束代替激光在真空室中预热和熔化粉末床层 [7,8]。SEBM 的构建速度更快(高达 100 cm3/h),但表面光洁度较差(15-35 Ra,而 SLM 为 4-11 Ra)。LMD 是一种增材制造工艺,其中零件被逐层熔覆 [8]。粉末不是选择性地熔化先前沉积在粉末床上的材料,而是通过惰性气体将粉末带入激光束中,在那里熔化,然后送入工件,在那里它们与先前沉积的薄表面层熔合。该技术的优势在于对构建尺寸没有限制,最高构建速度(高达 300 cm3/h)为
摘要:在过去的几十年中,对半导体硅的激光消融进行了广泛的研究。在超短脉冲结构域中,无论是在FS尺度还是PS尺度上,硅的消融中的脉冲能量阈值都非常依赖于脉冲宽度。然而,在NS脉冲量表中,对脉冲宽度的能量阈值依赖性尚不清楚。这项研究阐明了NS NIR激光消融硅的相互作用能量依赖性。通过脉冲能量沉积速率确定消融或熔化的水平,该脉冲能量沉积速率与激光峰值成正比。较短的脉冲宽度高峰值功率可能会引起表面消融,而较长的脉冲宽度可能会诱导表面熔化。随着脉冲宽度从26增加到500 ns,消融阈值从5.63增加到24.84 j/cm 2。随着脉冲宽度从26增加到200 ns,熔化阈值从3.33增加到5.76 j/cm 2,然后一直保持恒定直至500 ns,最长的宽度。与较短的脉冲宽度不同,较长的脉冲宽度不需要较高的功率水平来诱导表面熔化,因为可以在较低的加热时间较长的脉冲宽度时诱导表面熔化。表面熔化的线宽度小于聚焦点尺寸;该线在缓慢的扫描速度下以连续线的形式出现,或者以高扫描速度以隔离点的形式出现。相比之下,从消融中的线宽度显着超过了聚焦的点大小。