dlrs太空推进研究所拥有与火箭发动机推室设计方面相关的实验研究的长期遗产。由于欧洲的传统关注欧洲的LOX/氢气推进系统,例如沟渠,HM-7B或Vinci,因此科学焦点被放在LOX和氢气的高压燃烧现象上。感兴趣的科学领域包括点火和瞬态,燃烧效率和动力学以及喷油器设计,燃烧室冷却,喷嘴流以及推力室结构和疲劳寿命。在欧洲研发测试台P8上使用各种测试标本进行了与高压燃烧相关的实验,该试验具有在代表典型火箭发动机的条件下进行测试的可能性[3]。自2014年以来,DLR也在涡轮机械领域建立能力。基于这些现有能力和测试功能,DLR于2017年启动了Lumen Bread Engine项目,其主要目标是:促进对发动机流程的理解,以系统级别展示能够预测
为了实现零碳社会,人们关注的焦点是减少交通运输领域的碳排放1)、2),但对于支持物流的大型柴油车辆,也需要提高燃油效率并减少碳排放。近年来,柴油机废气排放评价方法不断更新,需要能够在各种条件下满足废气法规的控制方法。然而,众所周知,发动机建模是一个难题,因为它涉及燃烧现象,并且非线性、延迟和相互作用的存在使得构建控制器变得困难。 参考文献3)阐述了对柴油机进排气系统H ∞ 控制的研究,提出了一种通过切换控制器来覆盖运行范围的方法。另一方面,人们也在研究利用实验数据创建发动机的神经网络模型4)。虽然可以使用复杂且详细的仿真模型来模拟发动机,但是很难将其直接用作控制模型。一旦收集到数据,就可以相对容易地创建神经网络,并且神经网络被广泛用于近似、分析、异常检测和模拟。参考文献5),6)研究柴油机的模型预测控制,利用机器学习推导出状态空间表示,并利用神经网络近似控制律,实现高速控制计算。在参考文献[7]中,我们提出了一种结合Hammerstein-Wiener模型和输入凸神经网络的模型。我们还通过将该方法应用于发动机气道系统的建模和控制来检验其实际适用性。在参考文献8)中,提出了一种基于模型的柴油发动机空气路径控制,作为一种模型预测算法,解决具有输入约束的最优控制问题。在参考文献[9]中,开发了一种基于非线性自回归模型的非线性模型预测控制器,该控制器使用外生输入神经网络来解决柴油发动机的控制问题。然而,目前还没有开发出能够建立柴油发动机的神经网络模型并针对该模型系统地进行设计的控制方法。
测量方法。具体而言,可以根据压力传感器(压力传感器)获取的压力历史来计算爆震波的传播速度,或者记录自发光现象的高速视频以定位燃烧现象。除此之外,还需要获得RDRE内部爆震波本身的形状、燃料/氧化剂气体混合物的干涉模式等信息,这些信息无法使用常规方法确定,但却极其重要RDRE 的实际应用需要定量可视化测量。被称为纹影法和阴影图法的方法广泛用于可视化和测量流动,但为了获得定量信息,更适合采用可以测量干涉条纹的干涉测量法。在一般的干涉仪方法中,将从作为光源的激光器发射的激光束用作“物光束”(获取有关目标现象的信息)和“参考光束”(穿过目标现象并充当目标现象的信息)。产生干涉条纹的参考)。物体光传播与物体光相同的光路长度。此外,只有物光被引导到测量部分,参考光不允许出现任何现象,而是在成像装置之前重新集成为单光束,并且两束激光束处于同一位置。光路,产生干涉条纹并记录在设备上。如上所述,干涉仪法的光学系统通常比较复杂。另一方面,对于本研究中的测量目标RDRE来说,以双筒内传播的爆震波为测量目标,RDRE燃烧实验场地是一个开放空间,没有实验的辅助设备。考虑到该区域周围物体较多,且没有足够的空间安装光学系统,因此确定使用一般干涉仪进行视觉测量会很困难。 因此,在本研究中,我们确定“点衍射干涉仪”是合适的,它被归类为干涉测量方法中的“共光路干涉仪”,并且在成像装置之前分离物光束和参考光束。针对发动机燃烧实验,我们设计并制作了适用的点衍射干涉仪光学系统,并将其应用于RDRE燃烧实验。实现了以下目标。