淀粉样蛋白功能材料由淀粉样蛋白纤维结构块制成,这些结构块由淀粉样蛋白天然蛋白或合成肽体外生产,具有多种功能,包括环境科学和生物医学、纳米技术和生物材料。然而,淀粉样蛋白的可持续和可负担来源仍然是大规模应用的瓶颈,迄今为止,人们的兴趣仍然主要局限于基础研究。植物来源的蛋白质因其天然丰富和对环境的影响小而成为理想的来源。在此,燕麦球蛋白(燕麦植物的主要蛋白质)被用于生产高质量的淀粉样蛋白纤维和基于其的功能材料。这些纤维显示出丰富的多链带状多态性和具有不可逆和可逆途径的纤维化过程。此外,作者还制造了燕麦淀粉样蛋白气凝胶、薄膜和膜,可用于水净化、传感器和图案化电极。展示了燕麦淀粉样蛋白相对于其他蛋白质来源的可持续性足迹,有望为先进材料和技术提供一个环境高效的平台。
“这些发现为开发具有更高营养价值的燕麦和其他谷物作物品种铺平了道路,这些品种可以解决特定的健康问题,”领导这项研究的植物科学系副教授 Jaswinder Singh 解释道。
古罗马人曾将燕麦视为“病小麦”,不适合人类食用。但近年来,燕麦作为健康的超级食品和生活方式产品,重新受到人们的青睐。例如,纯素卡布奇诺含有燕麦奶,燕麦被用作植物性肉类替代品的蛋白质来源,而植物性肉类替代品是食品行业增长最快的市场之一。由于燕麦中混合链 β-葡聚糖纤维含量高,因此被宣传为可以降低胆固醇水平的特别健康食品。然而,对燕麦基因组资源的投资落后于小麦和大米等主要谷物。特别是,缺乏染色体级参考基因组,这限制了基于基因组学的农学重要性状(包括食品品质性状)的分子基础研究。
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2025 年 1 月 28 日发布。;https://doi.org/10.1101/2025.01.26.633040 doi:bioRxiv preprint
精确诊断是临床医学的基石。在东亚人中,经典1型糖尿病在40岁之前诊断出的年轻糖尿病患者中并不常见,其中家族史,肥胖,β细胞和肾脏功能障碍是关键特征。年轻发作的糖尿病会影响诊所环境中患有糖尿病的五分之一的亚洲成年人;但是,它通常被错误分类,从而导致脱靶治疗。复杂的病因,较长的疾病持续时间,积极的临床过程以及缺乏循证指南,导致了这些年轻患者的可变护理标准和过早死亡。合并症的高负担,尤其是精神疾病,突出了与这个沉默的杀手有关的众多知识差距。大多数年轻糖尿病患者的大多数成年患者是作为各种诊断年龄的异质群体的一部分。由对年轻糖尿病特别感兴趣的医生领导的多学科护理团队将有助于提高诊断的精度并解决其身体,精神和行为健康。为此,付款人,计划者和提供者需要在常规实践中系统地收集和重新设计实践环境,以阐明年轻发病的糖尿病的多症,对这些易受伤害的人进行多种焦油,并改善结果。
目的:神经炎症是响应中枢神经系统(CNS)损伤,感染,毒素刺激或自身免疫性而发生的。我们先前在脂多糖(LPS)刺激下分析了HT22细胞(小鼠海马神经元)的下游分子变化。我们检测到纤维化蛋白(FBL)的表达升高,这是一种核仁甲基转移酶,但相关的促炎机制未被系统地阐明。这项研究的目的是研究FBL影响神经炎症的潜在机制。方法:使用RT实时PCR,蛋白质印迹和免疫荧光来评估用LPS刺激的HT22细胞中FBL的mRNA和蛋白质表达,以及FBL的细胞定位和荧光强度。Bay-293(七个无同源物1(SOS1)抑制剂的儿子),SR11302(激活蛋白-1(AP-1)抑制剂)和KRA-533(KRAS激动剂)用于确定FBL效果的潜在的分子机制。ap-1是FBL的靶蛋白,并用T-5224(AP-1抑制剂)进行验证。另外,通过转录组测序鉴定了FBL的下游信号通路,并通过RT-real-eal-time PCR验证。结果:LPS在HT22细胞中诱导FBL mRNA和蛋白质表达。深入的机械研究表明,当我们抑制C-FOS,AP-1和SOS1时,FBL表达降低,而当使用KRAS激动剂时,FBL表达会增加。本研究揭示了FBL促进神经炎症的机制,并为治疗神经炎症提供了潜在的靶标。此外,在FBL过表达后,将NF-KB信号通路中炎症基因的转录水平(包括CD14,MyD88,TNF,TRADD和NFKB1)升高。结论:LPS通过RAS/MAPK信号通路诱导HT22细胞中FBL的表达,FBL进一步激活了NF-KB信号通路,从而促进了相关炎症基因的表达和细胞因子的释放。关键字:FBL,神经炎症,LPS,分子对接,转录组测序
。cc-by-nc-nd 4.0国际许可证未通过同行评审获得证明)是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是此预印本的版权持有人(该版本发布于2024年4月1日。; https://doi.org/10.1101/2024.03.27.583983 doi:biorxiv Preprint
在世界谷物产量统计中,燕麦排在第六位,仅次于小麦、玉米、大米、大麦和高粱。在世界许多地方,燕麦不仅用作谷物,还用作饲料和草料,用作铺垫物、干草、半干草、青贮饲料和谷壳。燕麦作物的主要用途仍然是用作牲畜谷物饲料,平均占世界总使用量的 74% 左右。在印度,燕麦育种始于 20 世纪 80 年代,是印度西北部、中部和东部地区最重要的谷物饲料作物。作为饲料作物,燕麦具有优良的蛋白质质量、脂肪和矿物质含量。它是一种美味、多汁且营养丰富的作物。许多疾病会造成严重的直接损害,主要是饲料产量的降低。其中包括冠锈病、茎锈病和叶斑病等疾病。在超过 31 个野燕麦品种中,已从燕麦基因库中发现了多种抗冠锈病、秆锈病、白粉病、BYDY 等主要病害的抗性基因。人们正在广泛利用标记辅助选择 (MAS)、标记辅助回交 (MABC)、标记辅助基因聚合和标记辅助轮回选择 (MARS) 等多种育种策略将抗性基因渗入优良品种。随着新测序技术的进步和生物信息学的飞速发展,完整的燕麦基因组测序已不再遥不可及。燕麦基因组测序将为育种者开发大量基于序列的标记(如 SNP)铺平道路,这些标记将有助于通过利用连锁不平衡作图和基因组选择来识别抗病基因。