我们提出了一项详细的研究,该研究对具有连续体的quasibound状态的机械符合光子晶体的微腔。最近预计此类系统将减少Fabry-Pérot-type光学机械腔中的光损失。但是,它们需要两个相互面对的光子晶体平板,这对实验实现构成了巨大的挑战。我们研究了如何简化这样的理想系统,并且仍然在连续体中表现出quasibound状态。我们发现,面向分布式的bragg反射的悬浮的光子晶体平板实现了连续体中具有准态状态的光力学系统。在该系统中,可以消除辐射腔损失,以至于仅由材料吸收的耗散性损失占主导地位。这些建议的光力学腔设计预计将具有超过10 5的光学质量因子。
对低碳运输的追求显着增加了对锂离子电池的需求。然而,电池制造的迅速增加,没有充分考虑与其生产和材料需求相关的碳排放,这构成了在上游上游大部分排放的威胁。在本文中,开发了生命周期评估(LCA)模型,以说明26个中国各省,20个北美地区和欧洲和亚洲的19个国家 /地区的锂离子电池的摇篮到门口足迹。对已发表的LCA数据的分析显示,关键电池材料的碳排放量相关;它们对自由lib的碳足迹的总体贡献因素而异。4取决于生产路线和来源。探索了生产位置与电池制造的闸门碳足迹之间的联系,预测的中值范围在0.1至69.5 kg CO 2 -eq kWh-1中。在美国和欧洲,肯塔基州和波兰等美国领先的西方电池制造地点与中国竞争对手具有可比的碳排放,甚至超过了几个中国省份的电池制造的碳排放。对Libs碳足迹的材料和能源贡献的这种解决方案对于为政策和决策提供了必不可少的,以最大程度地减少电池价值链的碳排放量。鉴于当前的现状,锂离子电池行业的全球碳足迹预计将在未来十年内每年达到1.0 GT CO 2 -EQ。随着材料供应链的脱碳和电池生产中的节能,每年的估计值较低,估计值为0.5 GT CO 2 -EQ。
开发一种基于人工智能 (AI) 的方法,用于检测接受 FDG-PET/CT 分期的霍奇金淋巴瘤 (HL) 患者的局灶性骨骼/骨髓摄取 (BMU)。将单独测试组的 AI 结果与独立医生的解释进行比较。使用卷积神经网络对骨骼和骨髓进行分割。AI 的训练基于 153 名未接受治疗的患者。骨摄取明显高于平均 BMU 的被标记为异常,并根据总异常摄取平方计算指数以识别局灶性摄取。指数高于预定义阈值的患者被解释为具有局灶性摄取。作为测试组,回顾性纳入了 48 名在 2017-2018 年期间接受过分期 FDG-PET/CT 且活检证实患有 HL 的未接受治疗患者。十位医生根据局灶性骨骼/BMU 对 48 例病例进行分类。在 48 例 (81%) 的局部骨骼/骨髓受累病例中,大多数医生同意 AI 的观点。医生之间的观察者间一致性为中等,Kappa 值为 0.51(范围为 0.25–0.80)。可以开发一种基于 AI 的方法来突出显示使用 FDG-PET/CT 分期的 HL 患者中的可疑局部骨骼/BMU。核医学医生之间关于局部 BMU 的观察者间一致性为中等。
结构电池是多功能设备,可以同时存储能量并承载机械负载。关键成分是碳纤维,它不仅充当结构增强,而且还可以通过可逆地托管利离子作为电极。仍然对LI和碳纤维相互作用知之甚少。在这里,我们绘制了用螺旋丙烯腈纤维插入的LI插入螺旋晶纤维中的螺旋纤维纤维(AES)。我们表明,在充电/放电速率的缓慢/放电速率下,LI在纤维的横向和纵向方向上均匀分布,并且在完全放电时,所有LI实际上都被排出。以快速的速度,LI倾向于将其捕获在纤维的核心中。在某些纤维中,在固体电解质相(SEI)和纤维表面之间发现LI板。我们的发现可以指导AES分析锂离子电池的其他碳质电极材料,并用于改善结构电池的穿孔。
推动是一项必不可少的非划算操作技能,用于任务,从预抓操作到场景重新排列,关于场景中的对象关系的推理,因此在机器人技术中广泛研究了推动动作。有效使用推动动作通常需要了解受操纵对象的动态并适应预测与现实之间的差异。出于这个原因,在文献中对推动作用进行了效果预测和参数估计。但是,当前方法受到限制,因为它们要么建模具有固定数量对象的系统,要么使用基于图像的表示,其输出不是很容易解释并迅速累积错误。在本文中,我们提出了一个基于图神经网络的框架,以根据触点或关节对对象关系进行建模,以效应预测和参数估计推动操作。我们的框架在真实和模拟环境中都得到了验证,这些环境包含不同形状的多部分对象,这些对象通过不同类型的关节和具有不同质量的对象连接,并且在物理预测上的表现优于基于图像的表示。我们的方法使机器人能够预测并适应其观察场景时推动动作的效果。它也可用于使用从未看过的工具进行工具操作。此外,我们在基于机器人的硬盘拆卸的背景下证明了杠杆起作的6D效应预测。
在过去的二十五年中,MAX 相及其衍生物 MXenes 已成为材料研究的焦点。这些化合物无缝融合了陶瓷和金属特性,具有高导热性和电导性、机械强度、低密度和耐极端条件性。它们的多功能性使其成为各种应用的有希望的候选材料,特别是在用于氢气释放的先进光催化和电催化中。此外,MAX 相和 MXenes 是潜在的储氢材料,具有独特的结构,可为高效的氢气储存和释放提供充足的空间,这对于燃料电池等清洁能源技术至关重要。本综述旨在全面分析它们在光催化、电催化和储氢中的作用,重点关注它们的层状晶体结构。MAX 相集成了优越的金属和陶瓷属性,而 MXenes 提供可调节的电子结构,可增强催化性能。持续探索对于充分发挥其潜力、推动清洁能源技术及其他领域至关重要。
2019-01 02/22/2019在推荐的操作模式下接受CCM模式。在遗留程序下的pkcs1.5桨叶的摄入量。2020-01 24.03.2020 Frodokem和Classic McEliece的建议,具有适用于PQC应用的合适安全参数,以及先前推荐的不对称过程。argon2ID建议基于密码的键推导。RSA键的过渡扩展,其钥匙长度从2000位到2023年底。2021-01 08.03.2021关于随机发电机的章节的修订,特别是在使用DRG.3-和NTG.1-随机生成器方面。ptg.2- Zelleneratorers不再建议用于一般目的。记录基于哈希的签名过程的标准化版本。2022-01 28.01.2022整个文本的基本编辑修订版,布局的布局。在Rich侧通道分析,QKD和种子生成中更新随机数生成器。2023-01 09.01.2023将安全水平提高到120位,更新PQ密码学区域。2024-01 02.02.2024与Quantum-SAFE密码学有关的基本重组,驳回2029年DSA的建议,接纳MLS协议。
Interstellar 的火箭之所以选择液态甲烷作为燃料,是因为其性能高、成本效益高。与煤油等有毒且难以处理的传统火箭燃料不同,液态甲烷更容易管理。这使其成为火箭生产和运营的绝佳选择。此外,使用从牛粪中提取的液态生物甲烷可显著促进碳中和。这一举措不仅解决了北海道奶牛养殖区的气味问题,还支持当地能源自给自足,促进环保发展。
这项研究介绍了一种创新的多学科设计方法,用于高度导电和轻巧的针脚的散热器,利用石墨烯技术的优势。主要目的是优化电动汽车(EV)中基于硅碳化物(SIC)的逆变器的热管理。在模块上,在模块上进行了综合分析,包括扫描电子显微镜(SEM)和能量色散X射线光谱(EDS),在模块上进行了全面的分析。采用3D结合传热(CHT)方法的详细流体动力学模型用于评估与冷却液接触的SIC功率开关的热行为。多学科分析最初是在基于铝制的散热器上实施的,经过实验验证,随后与石墨烯进行了比较。与热链设计中的石墨烯的整合表现出显着的改进,包括在6 L/min min流体流量的情况下,传热系数(HTC)增加了24.4%,热电阻(接收到流体)降低了19.6%。因此,与铝制版本相比,基于石墨烯的散热器中的SIC芯片的温度升高11.5%。通过采用石墨烯而不是传统金属实现的SIC逆变器的冷却解决方案的改进,作为概念证明。这表示在性能和功率密度之间的关键平衡方面向前迈出了一步。