由于现代社会人口爆炸式增长和工业发展迅猛,能源需求不断增加,环境问题日益严重,因此进一步发展高效的能源转换技术,从太阳能、生物质能、风能和潮汐能中获取可再生能源已引起人们的广泛关注。1 – 3 储能系统 (EES) 是重要的推动因素之一。储能系统主要包括两大类,前者通过电极材料中的氧化还原反应将电能以化学能形式储存,后者利用电极材料表面离子的快速物理吸附。4 – 6 电荷存储机制的差异使电池具有高能量密度,而超级电容器具有高功率密度。4,7,8 例如,
摘要将纳米颗粒作为腐蚀抑制剂的使用变得越来越受欢迎,因为由于表面与体积比的增加,其腐蚀效率提高。纳米颗粒,可有效地对腐蚀金属表面进行物理/化学吸附并有效抑制腐蚀,也具有低毒性,低成本和易于产生的腐蚀性。在这项研究工作中,使用减肥方法来研究使用Senna Occidentalis根提取物合成的银纳米颗粒(AGNP)的抑制性能,作为在298 K和308 K处的0.5 m H 2 SO 4培养基中降低的降低碳钢抑制剂的环境良性腐蚀抑制剂。观察到,与钢的腐蚀速度增加了钢的腐蚀速度,并增加了与钢的腐蚀速度相比的腐蚀量增加了钢的腐蚀量,并在钢铁中的腐蚀速度增加了钢的腐蚀。在308 K时,在308 K -3的浓度下,在308 K的浓度下获得了65.59%的最高抑制效率,在308 K时浓度为1 GDM -3时,最低抑制效率。观察到表面覆盖率随纳米颗粒浓度的增加而增加,并且随温度的升高而下降。这可能是由于物理吸附机制的结果。发现,在抑制过程中,评估的活化能比未抑制过程高。在存在纳米颗粒的情况下,明显活化能的增加表示物理吸附机制,而相反的情况通常归因于化学吸附。吸附Q AD的热值表明吸附现象是放热的。简介关键字:纳米颗粒,银,纳米颗粒,塞纳西南利斯,腐蚀。
摘要 本研究致力于将通过硬模板法制备的中孔-大孔 SiO 2 块体碳材料的纳米级孔隙空间与相应的纳米级多环芳烃微结构连接起来,使用两种不同的碳前体,即可石墨化沥青和不可石墨化树脂,这两种碳前体通常表现出明显不同的碳化特性。通过与典型的气体吸附物 (Ar) 相比,相对较大的有机分子 (对二甲苯) 的吸附行为研究了这些块体碳材料的微孔和中孔率。此外,为了详细了解纳米孔隙空间,应用了小角度中子散射 (SANS) 结合原位物理吸附,在中子散射过程中使用氘代对二甲苯 (DPX) 作为对比匹配剂。通过 SANS 和广角 X 射线散射 (WAXS) 的特殊评估方法,分析了碳前体对碳微结构尺寸和无序性方面的原子尺度结构顺序、纳米孔结构和模板过程的影响。WAXS 分析表明,与单块树脂相比,沥青基单块材料表现出更有序的微观结构,由更大的石墨烯堆叠和相似的石墨烯层尺寸组成。另一个主要发现是,在两种不同的碳前体沥青和树脂中发现的氩气和氘代对二甲苯之间的可及微孔/中孔率存在差异,而沥青和树脂通常可被视为具有代表性的碳前体。这些差异本质上表明,如果使用探测气体(例如 Ar 或 N 2)进行物理吸附来评估纳米级孔隙空间的可及性,则可能会提供误导性参数。
1997 年,Dillon 等人首次完成了一项里程碑式的工作,利用 SWCNT 凝聚高密度氢气,并证实了 H2 在 SWCNT 上的物理吸附。11 此后,人们通过大量的实验和理论研究对碳纳米管基材料的储氢进行了研究。12–17 由于人们在这方面做出了大量的科学努力,近年来基于管状多孔材料的室温储氢不断提高。然而,这些储氢能力的提高是通过增加氢与储氢体系之间的结合能来实现的,18,19 这最终会导致氢的解吸更加困难。此外,高压或低温的工作环境也会导致 SWCNT 储氢材料中 H2 的解吸困难
氢是由于其高能量密度和零碳排放而导致可再生能源存储和运输的有前途的候选者。其实际应用面临与安全,有效的存储和释放系统有关的挑战。本评论文章研究了用于氢储存的高级纳米结构材料,包括金属乙酰基和氰化物配合物,B,N掺杂的γ-graphyne纳米管(γ-GNT),磷化锂双螺旋和NI-Formated Concobon-Cobon-Coarbon基簇。密度功能理论(DFT)计算用于分析结合能,热力学稳定性和吸附机制。ni装饰的C 12 N 12纳米群体表现出增强的储存能力,具有良好的N-(μ-Ni)-n构造的最高八个H 2分子结合。磷化锂双螺旋在一个稳定的半导体框架内显示出9.6 wt%氢气的潜力。在硼掺杂位点使用OLI 2的γ -GNT的功能显着提高了存储潜力,从而实现了实用应用的最佳氢结合能。此外,通过贵重气体插入稳定的金属乙酰基和氰化物配合物显示热力学上有利的氢吸附。这些结果突出了这些功能化纳米结构的潜力,可以实现高容量,可逆的氢存储。γ-GNT提供高表面积和可调电子特性,非常适合通过杂原子掺杂增强物理吸附。磷化锂双螺旋促进了通过不饱和锂中心的库巴斯样化学吸附。这些材料代表这项研究中的纳米结构,例如γ-图纳米管(γ-GNT),磷化锂双螺旋,金属乙酰基和氰化物络合物以及基于NI染色的碳基簇,是基于其具有互补氢充气机制的能力,包括物理学和化学能力。金属乙酰基和氰化物配合物通过电荷转移和共轭框架稳定氢吸附,而NI装饰的簇结合了极化诱导的物理吸附。
急性辐射综合症 酸度测定适应 声学适应 环境适应 公寓适应 NAQ适应 身体适应 社会适应 社会职业适应 工作场所适应 职业适应 适应自动化 自适应神经模糊推理系统 增材制造 ADHD 粘附性肥胖 需求管理 管理测量 在线管理 国家管理 警察管理 劳动管理 公共管理 政府管理 地方政府管理 财政管理 个人数据管理员 内容注释 Adobe Image Ready Adobe Photoshop AdobeinDesign ADR 肾上腺素地址吸附矿物吸附剂碳吸附剂物理吸附成人成人工人成人咨询小组己二酸二乙基己酯曝气气动声学有氧能力有氧工作量有氧运动有氧生物学
纳米多孔材料的纹理特性(例如孔径和连通性)的详细分析对于确定这些特性与气体储存,分离和催化过程的性能相关性至关重要。开发具有均匀,量身定制的孔结构的纳米多孔材料的进步,包括引入分层孔系统,为这些应用提供了巨大的潜力。在这种情况下,在理解受限流体的吸附和相行为方面取得了重大进展,因此在物理吸附特征中取得了进步。这可以使用高级高分辨率实验协议以及基于统计力学的先进方法,例如基于密度功能理论和分子模拟的方法,实现可靠的孔径,体积和网络连接分析。如果存在宏观孔,则吸附和汞孔隙法的组合可能是有用的。因此,讨论了了解汞入侵/挤出机制的一些重要进展。此外,还引入了一些有希望的互补技术,以表征浸入液相的多孔材料。
生物芯片技术包括一系列技术,这些技术对于生物芯片的开发、生产和在不同生物医学领域的应用至关重要。制造方法起着关键作用,通过微阵列生产技术(如点样、喷墨打印和原位合成),可以实现对生物分子的并行研究。通过微尺度流体操纵实现对生物反应的精确控制,微流体的集成大大改善了生物芯片的功能。为了确保通过化学功能化、物理吸附和生物共轭策略有效且有选择地将目标分子捕获在生物芯片表面,表面化学和生物分子固定方法至关重要。生物芯片技术严重依赖纳米技术,因为量子点、纳米线和纳米颗粒等纳米材料具有更好的标记、传感和信号放大能力。处理和分析生物芯片产生的海量数据集需要整合生物信息学工具和数据分析算法。这使得发现重要的生物系统见解成为可能。
采用一锅法,在水溶液中使用两亲性嵌段共聚物合成氧化镍 (NiO) 纳米花。Pluronics F-127 嵌段共聚物在 NiO 纳米花的形成过程中起结构导向剂的作用。沉淀剂的受控水解缓慢释放出氨,氨可形成 Ni(OH) 2,后者在聚合物溶液中稳定下来。煅烧去除了纳米复合材料的聚合物部分,并将 Ni(OH) 2 转化为具有面心立方 (FCC) 相的 NiO。合成的 NiO 纳米花具有介孔结构,平均表面积为 154 m 2 /g。带负电荷的刚果红 (CR) 和带正电荷的 NiO 纳米花之间的物理吸附和静电相互作用使得 CR 染料能够在环境条件下吸附。染料的吸附遵循拟二级动力学,吸附剂通过煅烧再生,并以相似的效率循环三次。由 Elsevier BV 出版
然而,溶液处理的 SnO 2 需要在约 (150 – 180 C) 下进行后烧结处理。22,23 因为在无氧环境中对化学计量平衡的胶体 SnO 2 进行退火,在隔氧手套箱中进行后烧结可能会导致 SnO 2 中出现氧空位或缺陷,所以这种烧结处理通常在环境空气中进行,这不可避免地会导致氧气吸附 24,25 在纳米晶体 SnO 2 薄膜上。在退火过程中,这些周围的氧分子从物理吸附转化为化学吸附,通过有效地从 SnO 2 导带中提取本征电子,在表面形成 O 2 。26 因此,在钙钛矿和 SnO 2 界面之间形成了能带弯曲和电子屏障,导致 SnO 2 的电导率显著降低。 27 由于这些吸附的 O2 带负电荷,钙钛矿层中光生电子向 SnO2 的传输会受到更多界面电荷的阻碍