外尔半金属 MoTe 2 为研究外尔物理与超导之间的相互作用提供了难得的机会。最近的研究发现,Se 取代可以将超导性提高到 1.5 K,但会抑制对于外尔态的出现至关重要的 T d 结构相。迄今为止,尚未建立对增强超导和 T d 相可能共存的微观理解。在这里,我们使用扫描隧道显微镜研究了最佳掺杂的超导体 MoTe 1.85 Se 0.15,其体相 T c ∼ 1.5 K。通过准粒子干涉成像,我们发现了具有破缺反演对称性的低温 T d 相的存在,其中超导性全局共存。此外,我们发现从上临界场和涡旋附近的态密度衰减中提取的超导相干长度远大于现有化学无序的特征长度尺度。我们发现 MoTe 1.85 Se 0.15 中的 Weyl 半金属正常相具有稳健的超导性,这使它成为实现拓扑超导的有希望的候选材料。
自发现石墨烯以来,二维(2D)材料中的光 - 形式相互作用一直是研究的重点。2D材料中的光 - 物质相互作用长度比2D材料的原子性质要短得多。等离激元纳米结构通常与2D材料集成在一起,以增强光 - 物质相互作用,为基础研究和技术应用提供了巨大的机会。纳米粒子(NPOM)结构,具有极限狭窄的光场。2D材料为研究具有亚纳光分辨率和量子等离子体的等离子场提供了一个良好的平台,直至单个原子的特征长度尺度。一份重点和最新的评论文章高度推论,以及时摘要,以概述这个快速增长的领域的进展,并鼓励在这一问题中进行更多的研究工作。在这篇综述中,我们将首先介绍NPOM结构中等离子体模式的基本概念。与2D材料中的等离子和准粒子之间的相互作用,例如,从弱耦合到强耦合,以及详细描述了从弱耦合到强度应用的激子和声子。也将触摸由2D材料(例如量子隧穿)分离的亚纳米计金属间隙中的相关现象。我们最终将讨论尚未清楚地理解的现象和物理过程,并为将来的研究提供了前景。我们认为,2D材料和NPOM结构的混合系统将来将是一个有希望的研究领域。
摘要 虽然在没有自由液体的情况下,通过极度干旱的表面交换的蒸汽会影响沙海的水平衡,但由于缺乏具有精细空间分辨率的精确仪器,其机制记录不多。为了纠正这个问题,我们报告了流动沙丘表面下方的体积密度分布和蒸汽质量分数的时空变化,这些变化是用对吸附在沙粒上的微小水膜敏感的多传感器电容探头获得的。我们还记录了 2 天内的风速和风向、环境温度和相对湿度、净辐射通量和地下温度分布。数据验证了蒸汽质量分数的非线性模型。与通过谷物传导的热量不同,蒸汽通过平流和扩散渗透到间隙孔隙空间。在比蒸发更长的时间尺度上,吸附膜与周围环境保持平衡并阻碍分子扩散。它们与地下温度的非线性耦合导致蒸汽分布出现拐点,而在更简单的扩散系统中则没有对应现象。当风在地形上引起细微的压力变化时,就会出现孔隙平流。在风沙输送期间,流沙会间歇性地使地表脱水,引发瞬时蒸汽波,其振幅在特征长度上呈指数衰减,这意味着吸附率受动力学限制的活化过程控制。最后,探测器产生与大气边界层的扩散和平流交换。在白天,它们的总通量小于预期,但几乎与地表和高空的蒸汽质量分数之差成正比。在夜间更稳定的分层下,或在风沙输送期间,这种关系不再成立。
单色光或进入特定周期性培养基的物质波显示出尖锐的bragg散射到特定的角度。然而,随机干扰完美的晶格位置会导致布拉格峰之间的弥散散射。随着分散体的增加,弥散散射最终占主导地位,最后,布拉格峰消失了。弥散散射是结构化的,在介质中揭示了相关性。例如,用于在水中X射线散射[1,2],可见光在单分散聚苯乙烯珠的无序堆积中的散射[3,4],这对相关函数具有宽峰,具有特征长度尺度,这又在结构函数中产生宽峰。在无序培养基的研究中,布拉格峰与周期性结构有关[5,6]。但是,没有预期的是,在任何规模上没有完美顺序的随机介质可以产生尖锐的散射角度,但我们在这里报告了这样的情况。对于我们选择的潜力,空间自相关函数具有宽峰,因为原子对相关函数在水中,但散射角度仍然非常清晰。这很令人震惊;下面定义的随机电势中的散射就像是在周期性电势中的布拉格散射,而不是相关液体中的散射。最接近的类似物(尽管不是完美的类似物)是粉末衍射,许多随机定向的微晶被密切包装。下面定义的电势没有这样的“微晶”,但它具有bragg峰。但是,散射的时间演变与Fermi的黄金法则不兼容,如下所述。我们通过检查电势的傅立叶成分来计算散射矩阵元素或等效地来解释这一惊喜。我们考虑以下形式的随机电势
本书旨在概述与半导体材料中的纳米科学和纳米技术相关的基本物理概念和设备应用。如书中所示,当固体的尺寸缩小到材料中电子的特征长度(德布罗意波长、相干长度、局域长度等)的大小时,由于量子效应而产生的新物理特性就会显现出来。这些新特性以各种方式表现出来:量子电导振荡、量子霍尔效应、共振隧穿、单电子传输等。它们可以在正确构建的纳米结构中观察到,例如半导体异质结、量子阱、超晶格等,这些在文中详细描述。这些量子结构所表现出的效应不仅从纯科学的角度来看意义重大——过去几十年来它们的发现者获得了数项诺贝尔奖——而且在大多数上一代微电子和光电子设备中也有重要的实际应用。 20 世纪 70 年代初,IBM 的 Esaki、Tsu 和 Chang 开创性地开展工作,为后来在量子阱和超晶格中观察到的许多新效应奠定了基础,从那以后,仅仅过去了 30 年左右。为了观察这些效应,20 世纪 80 年代,许多先进的研究实验室定期采用分子束外延、逐层生长和半导体纳米结构掺杂等先进技术。由于所有这些新发展都发生在相对较短的时间内,因此很难及时将它们纳入大学课程。然而,最近大多数一流大学都更新了课程,并在研究生和本科生阶段开设了以下课程:纳米科学与工程、纳米结构与设备、量子设备和纳米结构等。甚至还开设了纳米科学与工程硕士学位。物理学院、材料科学学院和各种工程学院(电气、材料等)经常开设这些课程。我们认为,在普通本科阶段,缺乏关于纳米科学和纳米技术的综合教科书。一些关于固体物理学的一般教科书开始包括几个部分,在某些情况下,甚至包括一整章,来介绍纳米科学。这些材料经常被添加为这些著名教科书新版本的最后一章,有时并没有真正将其整合到书的其余部分中。然而,对于可以部分用于研究生课程的专业书籍来说,情况要好一些,因为在过去的十五年里,一系列关于纳米科学的优秀教科书
Design and analysis of a HTS internally cooled cable for the Muon Collider target and capture solenoid magnets L. Bottura(1), C. Accettura(1), A. Kolehmainen(1), J. Lorenzo Gomez(2), A. Portone(2), P. Testoni(2) (1) CERN, Geneva, Switzerland (2) Fusion for Energy (F4E), Barcelona,西班牙摘要MUON对撞机是被认为是高能物理学的下一步的选择之一。它面临许多挑战,并非最不重要的是超导磁铁技术。目标和捕获电磁阀是其中之一,大约18 m长的通道由轴向电磁磁铁组成,轴是20 t的1.2 m自由孔和峰场。其中一个主要问题来自核辐射环境,可能影响线圈的稳定操作,及其材料完整性。能量光子会导致较大的辐射热负荷,在冷质量中的几个kW的阶数,并沉积相当大的剂量,几十mgy。中子在10 -3 dpa的水平下造成物质损害。这些值处于超导线圈技术的当前限制。我们在这里描述了目标的概念设计并捕获了螺线管,重点是HTS电缆设计,这在很大程度上是受到麻省理工学院开发的毒蛇概念的启发。我们展示了如何解决特定于选择的HTS电缆的边缘和保护,冷却和机制。引言2021年欧洲粒子物理战略的更新已确定五个高优先级R&D主题将针对高能物理学的下一步[1]。比田间的μ子的回旋半径大得多,因此梁在通道中的绝热膨胀。所确定的主题之一[2]是Muon Collider(MC)的概念设计,该机器可以在能量前沿探索物理。MC可以在非常高能量的情况下提供点状颗粒的碰撞,因为可以在环中加速muon,而不会受到电子经历的同步辐射的严重限制。对于超过3 TEV的质量中心能量,MC可以为通向能量边界的高光度对撞机提供最紧凑,最有效的途径。然而,对高光度的需求面临着由于静止时期短暂的寿命(2.2μs)引起的技术挑战,以及难以生产带有较小散发体的臂线束的困难。应对这些挑战需要协作[3]来发展创新概念,尤其是在超导磁铁领域。[4]最苛刻的挑战之一,本文的重点之一是托管目标和捕获通道的螺线管,该通道产生了宇宙束。muons是由于正质和负亲的衰减而产生的,这些衰变是由短,高强度质子脉冲与固体靶标(例如碳棒)碰撞所产生的。PION生产目标插入稳态的高场螺线管中,其功能是捕获电荷的亲,并引导它们进入创建MUON的衰减通道。沿通道轴的磁场轮廓需要具有特定的形状,目标峰场为20 t,在通道出口的衰减约为1.5 t,总长度约为18 m。场的特征长度约为2.5 m,即