小胶质细胞是大脑常住的吞噬细胞,可以吞噬突触成分和细胞外基质以及整个神经元。然而,是否有独特的分子机制来调节这些不同的吞噬状态。在这里,我们定义了一个分子截然不同的小胶质细胞子集,其功能是在发育中的大脑中吞噬神经元。我们从转录组合鉴定了I型干扰素(IFN-I)反应型小胶质细胞,该小胶质细胞在出生后第5天在部分晶须剥夺后扩展了20倍,这是一种加速神经回路的压力。原位,IFN-I反应性小胶质细胞是高度吞噬的,并且积极地吞噬了整个神经元。小胶质细胞中IFN-I信号传导(IFNAR1 FL/FL)的条件缺失,而不是神经元导致畸形的小胶质细胞,吞噬吞噬作用停滞,神经元与双链DNA断裂的神经元积累,这是细胞应激的标志物。相反,外源IFN-I足以通过小胶质细胞驱动神经元吞噬并限制受损神经元的积累。IFN-I缺乏小鼠在发育中的体感皮质中具有过量的兴奋性神经元,以及对晶须刺激的触觉超敏反应。 这些数据定义了一种分子机制,小胶质细胞在脑发育的关键窗口中吞噬神经元。 更广泛地,它们揭示了大脑发育中规范抗病毒信号通路的关键稳态作用。IFN-I缺乏小鼠在发育中的体感皮质中具有过量的兴奋性神经元,以及对晶须刺激的触觉超敏反应。这些数据定义了一种分子机制,小胶质细胞在脑发育的关键窗口中吞噬神经元。更广泛地,它们揭示了大脑发育中规范抗病毒信号通路的关键稳态作用。
摘要背景:梨状皮质 (PC) 占据内嗅沟的两侧,在颞叶癫痫 (TLE) 的病理生理学中起着重要作用。最近的一项研究表明,切除超过 50% 的 PC 可使癫痫发作的几率增加 16 倍。目的:我们报告了手动分割 PC 的可行性以及将测地线信息流 (GIF) 算法应用于自动分割以指导切除。方法:由两名盲法独立检查者对 60 名 TLE 患者(55% 为左 TLE,52% 为女性)进行 PC 手动分割,中位年龄为 35 岁(IQR,29 – 47 岁)和 20 名对照者(60% 为女性)进行 PC 手动分割,中位年龄为 39.5 岁(IQR,31 – 49 岁)。 GIF 算法用于创建分割 PC 的自动化管道,用于指导颞叶癫痫颞叶切除术中的切除。结果:患者和对照组的右侧 PC 较大。PC 分割用于指导前颞叶切除术,随后癫痫发作消失,视野或语言障碍消失。结论:可靠的 PC 分割是可行的,可以前瞻性地应用于指导神经外科切除术,从而增加颞叶癫痫颞叶切除术获得良好结果的机会。
未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本的版权持有人(该版本发布于2024年5月9日。; https://doi.org/10.1101/2024.05.05.08.593265 doi:biorxiv Preprint
2023年10月20日,在韩国,在南昌昌省的Seosan-Si市附近,首次确定了块状皮肤病(LSD)(WOAH 2023)。这次爆发发生在一个有41头牛的农场上。动物和植物检疫机构(APQA)在4个表现出临床体征的四头母牛中进行了逆转录聚合酶链反应(RT-PCR)后,证实了LSD的存在。从11月13日起,韩国已经发生了88次爆发。这些省在几个省份,包括Chungcheongnam-Do,Jeollabuk-Do,Gangwon-Do,Chungcheongbuk-Do,Incheon,Jeollanam-Do,Gyollanam-Do,Gyeonggi-do和Gyeongsangnam-do。目前,尚不知道该病毒是如何引入韩国的。然而,农业和食品部指出,由于自2019年以来在泰国,中国,蒙古和印度尼西亚等邻国爆发,他们一直在关注LSD进入韩国的侵害。在此准备之后,该部储存了疫苗和准备疾病的准备程序。
最近在梨状皮层(皮质不成熟神经元,CINS)的第二层中鉴定出了非出生的,产前产生的“未成熟”神经元,这提出了有关其维持或消耗的问题。大多数形式的大脑结构可塑性随着年龄的增长而逐渐下降,这是由于干细胞耗竭而在成人神经发生中特别突出的特征。在胚胎发生过程中产生了CIN的整个种群。然后,这些细胞只是在产后和成人阶段保留不成熟,直到它们“醒着”才能完成成熟并最终整合到神经回路中。因此,问题仍然是开放的,如果不依赖干细胞分裂的CIN是否可能遵循类似的与年龄相关的还原模式,或者在替代方面可能会留下成人和衰老大脑中的年轻,未分化的细胞的储层。在这里,通过使用免疫细胞化学用于细胞骨架标记doublecortin,在小鼠梨状皮层中分析了CIN的数量和特征。研究了CIN的丰度和成熟阶段,以及其他成熟/不成熟的标志物的表达。尽管在少年阶段,这种神经元种群显着下降,但让人联想到海马神经发生中观察到的神经元,但少量高度不成熟的CIN持续了高级年龄。总体而言,尽管随着年龄的增长而减少数量,但我们报告说,CIN存在于整个动物寿命中。
摘要 天然的抗弯曲装甲结合了坚硬的、离散的鳞片,附着在软组织上,提供独特的表面硬度(用于保护)和柔韧性(用于不受阻碍的运动)组合。鳞片状皮肤现在是一种鼓舞人心的合成防护材料,它具有吸引人的特性,但在柔韧性和防护性之间仍然存在有限的权衡。特别是,弯曲鳞片状皮肤,使鳞片在内弧面,会卡住鳞片并使系统显著变硬,这在手套等系统中是不可取的,因为手套的鳞片必须覆盖手掌侧。大自然似乎已经通过创造可以形成皱纹和褶皱的鳞片状皮肤解决了这个问题,这是一种非常有效的机制,可以适应大的弯曲变形并保持弯曲柔顺性。这项研究的灵感来自这些观察:我们探索了软膜上的刚性鳞片如何以受控的方式弯曲和折叠。我们使用离散元建模和实验相结合的方式研究了不同屈曲模式的屈曲能量和稳定性。具体来说,我们展示了鳞片如何诱导稳定的 II 型屈曲,这对于皱纹的形成是必需的,并且可以提高仿生保护元件的整体弯曲柔顺性和灵活性。
皮质回路中的计算在高级脑功能中起着根本性的作用。最近的技术进步极大地促进了对细胞类型特异性皮质突触回路的结构和连接及其在小鼠执行简单的目标导向感觉知觉任务中的功能的定量描述。对皮质回路如何处理感觉信息的机制理解需要详细的生物物理计算建模,从而需要越来越精确的数据。通过对结构、功能和模拟的综合研究,神经科学家现在能够研究皮质计算的因果机制。研究神经回路结构与功能关系的一个关键模型系统是小鼠桶状皮质,它处理来自鼻子 1 周围的胡须阵列的触觉感觉信息(图 1A)。自 1970 年 Thomas Woolsey 和 Hendrik van der Loos 发现桶状皮层以来,对其进行了 50 年的研究。2 我们在此讨论桶状皮层电路的结构、功能和模拟的未来研究途径,需要将这些研究途径整合起来,以建立行为结构与功能关系的因果关系。