双单倍体 (DH) 技术通过使单倍体胚胎/幼苗的染色体加倍,产生严格纯合的可育植物。单倍体胚胎来自雄性或雌性生殖系细胞,仅含有植物体细胞组织中发现的染色体数量的一半,尽管由于减数分裂遗传重组而呈重组形式。DH 生产允许以完全纯合植物(自交系)的形式快速固定这些重组单倍体基因组,这些植物在两代而不是六代或更多代中产生。DH 育种能够快速评估同质后代的表型性状。虽然对于大多数作物来说,单倍体胚胎是通过昂贵且通常依赖基因型的体外方法生产的,但对于玉米,有两种独特的植物体内系统可用于直接在种子中诱导单倍体胚胎。从玉米自然突变体中鉴定出的两种“单倍体诱导系”能够诱导父本或母本来源的胚胎。尽管与目标系轻松杂交足以触发单倍体胚胎,但需要进行大量改进才能将 DH 技术大规模生产。它们包括开发具有高诱导率(8-12%)的现代单倍体诱导系,以及将具有单倍体胚胎的玉米粒与正常玉米粒分选的方法。染色体加倍也是 DH 过程中的关键步骤。最近鉴定出的参与自发加倍的基因组位点为玉米的完全植物内 DH 流程开辟了前景。尽管玉米单倍体诱导系是在 50 多年前发现的,但由于新的应用和发现,它仍然成为头条新闻。事实上,母本单倍体诱导被巧妙地转移到难以转化的种质中,以提供基因组编辑机制。最近发现的两个控制单倍体诱导的分子因素使我们能够重新审视玉米母体单倍体诱导的机制基础,并成功地将单倍体诱导能力转化为其他作物。
已确定有 10 亿吨生物质原料可用于生产可再生生物燃料和生物化学品。这是为运输部门提供轻型、重型和航空燃料能源的关键碳原料之一。木质纤维素原料的利用有助于减少石油进口需求、促进农业发展、创造就业机会和减少温室气体排放,从而提高能源安全。然而,迄今为止,运营挑战阻碍了大批量木质纤维素燃料和化学品的工业生产。因此,美国能源部已投入大量研究资金,以了解和提高先锋纤维素生物炼油厂的运营可靠性。本文介绍了从淀粉乙醇工艺中采用的木质纤维素转化技术。所开发的工艺最终成功演示了使用多种原料(包括柳枝稷、能源高粱和两种玉米粒纤维)进行的 1,000 小时综合运行。本文重点介绍了工艺开发,解决了困扰纤维素糖领域许多问题(并将继续困扰这些问题),例如生物质进料到设备中、高灰分含量、多样化的副产品价值等。
摘要 :青贮复水玉米粒 (RC) 已被用于提高营养价值和促进农场储存。本研究评估了壳聚糖和乳酸微生物接种剂对青贮复水玉米微生物学、发酵特性和损失、化学成分、体外降解和有氧稳定性的影响。采用完全随机设计,使用了 40 个实验筒仓来评估以下处理:1) 对照 (CON):不含添加剂的 RC 青贮饲料;2) 壳聚糖 (CHI):含 6 g/kg 干物质 (DM) 壳聚糖的 RC 青贮饲料;3) 布赫纳乳杆菌 (LB):每克鲜重用 5 × 10 5 个 L. buchneri 菌落形成单位 (CFU) 的 RC 青贮饲料; 4) 植物乳杆菌和乳酸干酪杆菌 (LPPA):RC 每克鲜重青贮饲料中接种 1.6 × 10 5 个植物乳杆菌和 1.6 × 10 5 个乳酸干酪杆菌。添加剂增加了乳酸菌数量以及乳酸和丙酸浓度,减少了霉菌和酵母数量以及气体和发酵损失,提高了干物质回收率。与接种微生物的青贮饲料相比,CHI 青贮饲料的 pH 值、氨氮浓度和发酵损失均较低,而乙酸浓度较高。此外,CHI 和 LB 降低了青贮饲料有氧暴露后的 pH 值和温度。虽然各种处理对 RC 的营养价值影响不大,但 CHI 提高了青贮饲料的有氧稳定性,减少了发酵损失。 关键词 : 发酵概况、仁粒青贮饲料、乳酸菌、L. buchneri。