摘要 大多数用于产生纠缠和实际应用的量子系统都与环境不隔离,因此容易受到噪声的影响。两个系统之间在多个自由度上的纠缠被称为超纠缠,与传统纠缠态相比,它具有某些优势,包括对噪声的鲁棒性。量子照明、成像和通信方案涉及从一对纠缠光子中发送一个光子并保留另一个光子,通常只涉及将信号光子暴露在环境噪声中。噪声的破坏性会降低纠缠和其他相关性,而这些相关性对于许多此类应用至关重要。在本文中,我们研究了在噪声相互作用中使用某些路径偏振超纠缠态中的光子对的优势,其中只有一条路径中的光子受到噪声的影响。我们对这种噪声进行建模,并研究噪声对超纠缠光子中存在的相关性的影响。采用纠缠负性、纠缠见证和贝尔非局域性三种不同的方法来展示路径极化超纠缠探测态对噪声的弹性。
脑电图 (EEG) 广泛应用于脑机接口研究 [15]。利用 EEG 信号对认知任务进行分类一直是过去几十年的讨论焦点 [16]。低信噪比是 EEG 信号分类的常见障碍。虽然多种类型的机器学习和深度学习算法已用于认知任务分类 [4, 12, 23],但如果没有适当的噪声分离,EEG 信号分类的准确性就会遇到瓶颈。EEG 数据中的噪声可能来自各种来源,主要可分为两大类:i)来自外界的噪声,包括环境噪声、实验设置引起的噪声和静电引起的噪声等因素;ii)来自人体的噪声,包括眨眼和呼吸等身体活动以及分散注意力的想法等心理活动 [25]。尽管已经进行了大量研究并取得了成功,可以消除外部噪音 [14],但检测和消除内部噪音的问题仍然是一个需要进一步探索的领域。本文将重点关注后者的噪音来源,即心理活动的噪音,旨在设计一种算法来检测和消除心理干扰造成的噪音。
摘要 — 由于生物医学信号幅度非常低,且具有与环境噪声类似的高共模特性,因此用于这些信号的放大器应具有高 CMRR。交叉耦合放大器对差分和共模信号的负载行为导致高 CMRR,因此会强烈衰减共模信号。由于交叉耦合放大器差分增益较低,因此其负载与电流复用运算放大器相结合。在 0.18 µm CMOS 技术中,模拟并比较了具有传统共模反馈和改进负载的全差分电流复用 OTA 的最终 CMRR。模拟了它们的 CMRR 失配和工艺变化。根据模拟结果,对于相同的功耗 W 和 L,改进的交叉耦合负载电流复用具有最佳性能。在最坏情况下,其 CMRR 约为 90 dB,而总功耗在 1.8 V 电源电压下为 18 µW。带宽为 4.8 kHz,此带宽内的总输入参考噪声为 1.04 µV rms 和 0.43 µV rms(0.5 至 100 Hz),这对于本研究中考虑的 EEG 应用来说是可接受的噪声和带宽。
脑电图(EEG)信号在临床医学,脑研究和神经系统障碍研究中是关键的。然而,它们对生理和环境噪声受到污染的敏感性挑战了大脑活动分析的精度。深度学习的进步已经产生了抑制传统方法的欧EEG信号降解技术。在这项研究中,我们部署了保留网络体系结构(用于大型语言模型(LLMS)),用于EEG DENOSINGISENT,利用其强大的功能提取和全面的建模实力。此外,其固有的时间结构对准使保留网络特别适合EEG信号的时间序列性质,为其采用提供了额外的理由。为了将保留网络与EEG信号的一维特征相吻合,我们引入了一种信号嵌入策略,将这些信号重塑为有助于网络处理的二维嵌入空间。这种前卫方法不仅雕刻出EEG DENO的新型轨迹,还增强了我们对脑功能的理解和诊断神经系统疾病的准确性。此外,为了响应深度学习数据集的劳动密集型创建,我们提供了一个标准化的,预处理的数据集,该数据集准备简化该领域中的深度学习进步。
至,日期:2024年7月20日,环境与森林部(中部地区),肯德里亚·巴万(Kendriya Bhavan),第5楼,Sector-H,Aliganj,lucknow-226024。sub:“ 2023年10月至2024年3月”时期规定的环境条件 /保障措施的半年遵从性报告,以及2024年5月的环境监测报告,针对位于gh-01 /1的集体住房项目“元素”,pratap vihar and pratap vihar and district and pratap vihar和ghaziabad,U.P.M/s Ishaan侵犯了印度列兵。Ltd.亲爱的先生,这是指环境清除视频识别编号。EC23B038UP181159日期为06-11-2023,由北方邦州环境影响评估局发布,已被要求提交符合特定和一般条件/保障措施的遵守情况。鉴于上述内容,我们根据新的Moef&Cc Notification S.O提交了以下信息/文档的软副本。5845(e),日期为2018年11月26日您的详细信息:1。点 - 规定的环境条件/保障措施的明智依从性。2。环境监控报告;环境空气,环境噪声,水和土壤。我们完全向您保证,我们将遵守上述环境清除信中指定的所有特定和一般条件/保障措施。
摘要——每年,由于微睡眠导致的工作效率下降、伤害和交通事故,美国经济损失超过 4110 亿美元。为了减轻微睡眠的后果,需要一种全天候、不引人注目、可靠且社会可接受的微睡眠检测解决方案。不幸的是,现有的解决方案不能满足这些要求。在本文中,我们提出了一种用于微睡眠检测的新型耳背式可穿戴设备 WAKE。通过从用户耳后监测来自大脑、眼球运动、面部肌肉收缩和汗腺活动的生物信号,WAKE 可以以高时间分辨率检测微睡眠。我们引入了一种三倍级联放大 (3CA) 技术来控制运动伪影和环境噪声,以捕获高保真信号。通过原型设计,我们展示了 WAKE 可以在行走、驾驶或停留在不同环境中时实时抑制 9.74-19.47 dB 的运动和环境噪音,确保可靠地捕获生物信号。我们使用黄金标准设备对 19 名睡眠不足和嗜睡症患者评估了 WAKE。留一交叉验证结果显示 WAKE 在对未见过的受试者进行微睡眠检测方面的可行性,平均准确率和召回率分别为 76% 和 85%。
合适的激光源的可用性是未来空间任务的主要挑战之一,以准确测量大气C0 2。欧洲项目的主要目标是证明在综合路径差异吸收(IPDA)激光雷达系统中,将全症状导向器激光源用作太空传播激光发射机的可行性。我们在这里提出了提议的发射器和系统体系结构,初始设备设计以及执行的模拟结果,以估算功率,光束质量和光谱属性的源需求,以实现所需的测量精度。激光发射器基于两个Ingaasp/INP单片主振荡器功率放大器(MOPAS),可提供靠近1.57 URN所选吸收系的ON和OFF波长。每个MOPA都由频率稳定的分布式反馈(DFB)主振荡器,调制器部分和优化的锥形半导体放大器组成,以最大程度地提高光学输出功率。设计符合空间的激光模块的设计包括光束形成光学元件和热电冷却器。建议的系统使用随机调制连续波(RM-CW)方法将常规的脉冲源用调制的连续波源代替,从而使设计的半导体MOPA适用于此类应用。已定义了获得1 ppmv的C0 2检索精度和少于10米的空间分辨率的系统要求。信封表明所需的平均功率是几瓦,主要噪声源是环境噪声。
我们研究了当使用双模压缩真空态作为探针时,在损耗传感中的量子优势。在 PRX 4, 011049 中进行实验演示后,我们考虑了一种量子方案,其中信号模式通过目标,并在测量之前将热噪声引入闲置模式。我们考虑了两种具有实际意义的检测策略:巧合计数和强度差异测量,它们广泛用于量子传感和成像实验。通过计算信噪比,我们验证了即使在强热背景噪声下量子优势仍然存在,而经典方案使用直接受到热噪声影响的单模相干态。这种稳健性来自这样一个事实:在经典方案中信号模式受到热噪声的影响,而在量子方案中闲置模式受到热噪声的影响。为了进行更公平的比较,我们进一步研究了一种不同的设置,其中在量子方案中将热噪声引入信号模式。在这种新设置中,我们表明量子优势显著降低。然而,值得注意的是,在与量子 Fisher 信息相关的最佳测量方案下,我们表明双模压缩真空态确实在整个环境噪声和损耗范围内表现出量子优势。我们希望这项工作能为实验证明损耗参数传感中的量子优势提供指导,这种传感受有损和有噪声的环境影响。
高速磁浮列车通过隧道时,隧道内会产生突变的压力,对乘客的舒适度和设备的使用寿命产生不利影响,同时会向外辐射强烈的微压波,造成隧道出口的环境噪声。本文采用基于剪应力输送k - ω湍流模型的非定常可压缩雷诺平均Navier-Stokes方程,研究在隧道壁上设置吸盘对压力波的抑制效果,并比较不同吸盘速度下的实验结果。结果表明:开启吸盘后,在吸槽附近会产生一个低压区,可以减弱初始压缩波和列车前方的高压区;瞬时列车表面压力、隧道表面压力和微压波与吸盘速度有明显的关系。例如,与无吸力情况相比,在吸力速度为50 m/s的情况下,列车表面测点H1(列车车头处)处第一次和第二次压力突变幅度分别减小10.44%和30.61%;隧道表面测点T17(隧道中部)处的压力突变幅度减小14%以上;测点M2(隧道外,距隧道出口20 m处)处的微压波幅度减小12.44%。这表明采用吸力技术可以减轻隧道气动效应。不同吸力速度下的结果可为吸力执行器的设计提供参考。
抽象的主要激发是固体材料中Majorana fermions的准粒子类似物。典型的示例是Majorana零模式(MZM)和分散的Majorana模式。通过扫描隧道光谱进行探测时,前者表现为明显的电导峰,可精确定位在零能量处,而后者的表现为恒定或缓慢变化的状态密度。MZM遵守非亚伯统计,被认为是拓扑量子计算的基础,它高度免疫环境噪声。现有的MZM平台包括混合结构,例如拓扑绝缘子,半导体的纳米线或1D原子链,在传统的超导体顶部以及单个材料,例如铁基超导体(IBSS)和4HB – TAS 2。最近,在IBS Lifes中也实现了有序且可调的MZM晶格,为将来的拓扑量子计算提供了可扩展且适用的平台。在这篇综述中,我们介绍了最近对MZM的局部探测研究的概述。由材料平台分类,我们从feTe 0.55 SE 0.45和(li 0.84 Fe 0.16)Ohfese的feTe feete超导体中的MZM开始。然后,我们回顾了Iron-Pnictide超导体的主要研究以及IBSS以外的其他平台。我们进一步审查了有关有序和可调的MZM晶格的最新作品,表明菌株是调整拓扑超导性的可行工具。最后,我们就未来的Majorana研究提供了摘要和观点。