2型糖尿病(T2DM)是一种严重的慢性病,在全球范围内增长令人震惊。当前对T2DM的治疗主要依赖于药物组合来控制血糖水平,从而阻止高血糖相关并发症的发作。最近出现了多种靶向药物的开发,作为用于治疗具有多因素发病机理的复杂疾病(例如T2DM)的有吸引力的替代品。蛋白酪氨酸磷酸酶1B(PTP1B)和醛糖还原酶(AKR1B1)是两种与T2DM及其慢性并发症发展至关重要的酶,因此,针对这两种这些酶的双重抑制剂可以为这种复杂的病理学治疗提供新的酶。在继续搜索双靶标的PTP1B/AKR1B1抑制剂时,我们设计了新的(5-芳基-4-OXO-2-硫代硫代硫醇二唑烷-3-基)。,其中3-(4-苯基丁氧基)苄基衍生物6F和7F,具有有趣的抑制活性对这两个靶标,被证明可以控制与T2DM和相关并发症发展有关的特定细胞途径。
摘要:在2011年,出现了一种新型的超链连接聚合物(HCP),称为编织芳香聚合物(KAPS),其特征是它们具有非凡的化学和热稳定性,其孔隙率特性,尤其是其合成的简单性,其合成的简单性是基于以前的芳族单体的结合而没有任何均可进行的。下一个逻辑步骤是将金属掺入这些网络中,以支持不同的可溶性分子催化剂或金属纳米颗粒(NPS)。因此,在过去的十年中,含金属KAP的数量逐渐增长,我们认为,在报告的第一个KAPS诞辰10周年中,对所有含金属的KAP的审查及其在异质金属催化剂中的应用是强制性的。在本综述中,总结所有包含金属的KAP的最相关特征,分为两个大组,分为金属络合物或金属NP,并根据金属掺入的类型进行分类。最后,根据每个研究的反应中使用的金属进行比较,并评论了这些类型的材料的未来目标。
两性离子表面因其具有抵抗蛋白质、细菌和细胞粘附的倾向而越来越多地被用作防污涂层,并且通常以聚合物系统的形式应用。据报道,强相互作用的小分子两亲分子的自组装可产生用于防污应用的纳米带。合成的两亲分子自发形成具有纳米级横截面的微米长纳米带,并且本质上在其表面上显示出致密的两性离子部分涂层。涂有纳米带的基质表现出浓度依赖性厚度和近乎超亲水性。然后探测这些表面涂层的防污性能,结果表明,与未涂层对照相比,蛋白质吸附、细菌生物膜形成和细胞粘附均显着降低。利用粘性小分子自组装纳米材料进行表面涂层为有效的防污表面提供了一种简便的途径。
新的咪唑-5-氮杂化合物的合成5 - (((e)-Benzylidene)-3-((4'-(((Z)-Phenyldiazenyl)) - [1,1,1'-二苯基] -4-4- ylive- 2-乙烯基)-3-乙烯基-3,5-二氢-4 h-imidazol-4--在此工作,并在此工作。α,β-β-不饱和羧酸与硫二酰氯化物作为起始材料的反应,导致(E)-4-苯乙烯-2-氯羟唑-5(4 h) - 一(化合物A3)在两个步骤中通过苯甲酰氨酸和苯二氮的芳族芳族含有苯甲酸盐和芳族的水分,然后在两个步骤中处理了苯甲酸盐和芳族的水中,并在水中含有芳族的水含量和水中的水。耦合反应。 通过FT-IR,1 H-NMR和13 C-NMR光谱法对合成化合物的特征进行了表征。 抗菌和抗氧化活性的研究表明,这些分子中的一些是作为潜在的抗菌和抗氧化剂的。 k e y w o r d sα,β-β-不饱和羧酸与硫二酰氯化物作为起始材料的反应,导致(E)-4-苯乙烯-2-氯羟唑-5(4 h) - 一(化合物A3)在两个步骤中通过苯甲酰氨酸和苯二氮的芳族芳族含有苯甲酸盐和芳族的水分,然后在两个步骤中处理了苯甲酸盐和芳族的水中,并在水中含有芳族的水含量和水中的水。耦合反应。通过FT-IR,1 H-NMR和13 C-NMR光谱法对合成化合物的特征进行了表征。抗菌和抗氧化活性的研究表明,这些分子中的一些是作为潜在的抗菌和抗氧化剂的。k e y w o r d s
摘要:与传统的湿化学合成技术相比,超高真空条件下有机网络的表面合成几乎没有控制参数。分子沉积速率和基底温度通常是唯一需要动态调整的合成变量。本文我们证明,无需专用源,仅依靠回填氢气和离子规细丝即可创造和控制真空环境中的还原条件,并且可以显著影响用于合成二维共价有机骨架(2D COF)的类 Ullmann 表面反应。使用三溴二甲基亚甲基桥连三苯胺 [(Br 3 )DTPA] 作为单体前体,我们发现原子氢 (H • ) 会严重阻碍芳基 − 芳基键的形成,我们怀疑该反应可能是限制通过表面合成产生的 2D COF 最终尺寸的一个因素。相反,我们表明,控制相对单体和氢通量可用于生产大型自组装单体、二聚体或大环六聚体岛,这些单体、二聚体或大环六聚体本身就很有趣。从单一前体表面合成低聚物可避免湿化学合成时间长和沉积源多的潜在挑战。使用扫描隧道显微镜和光谱 (STM/STS),我们表明,通过此低聚物序列的电子状态变化提供了对 2D COF(在没有原子氢的情况下合成)的深刻见解,这是单体电子结构演变的终点。关键词:扫描隧道显微镜 (STM)、共价有机骨架 (COF)、三角烯、异三角烯、DTPA、自组装单层 (SAM)
通过比较基因组学分析在10种亚米胺类物种中鉴定出参与霉菌修复的基因,并选择了一组白rot basidiomycota(14)和软 - comcomycota(12)种,以确定矩阵的独特生物修复能力。使用系统发育主成分分析(PPCA)探索了基因组,搜索已经记录在生物催化/生物降解数据库中的基因。结果强调了甲藻类中芳香族基因/酶的明显,增加的潜力,尤其强调了高拷贝数和苯甲酸酯4-单一加仑酶[EC:1.14.14.14.92]同源物的不同光谱。此外,与其他白rot基体菌菌相比,在亚无菌素中涉及降解的其他酶更丰富,而参与多环芳族芳族芳族芳族氢碳(PAHS)的降解的酶在Armillariots和其他白色杂物中更为易于量。曲霉和北极曲霉的转录组填充物证实,在木材菌丝菌根中涉及苯甲酸酯和其他单核细胞芳香族降解的几个基因在木材含量的真菌菌丝体中明显地表达。数据与甲藻类物种一致,在降解芳香剂方面具有更强大的潜力。我们的结果提供了一种可靠,实用的解决方案,用于筛选可能的真菌候选者,以根据其基因组学数据的全部生物降解潜力,适用性和可能的专业化。
青少年暴露于呼吸空气中的各种化学物质,他们吃的食物,喝水和使用的产品。许多化学物质已被证明会破坏人体激素的功能,这些激素控制着重要过程,例如生长,代谢,生殖和性发育以及免疫功能。有一些研究表明某些干扰化学物质(EDC)可能会影响青春期的时间。需要进行持续的研究来定义敏感的时间窗口以进行暴露。EDC,例如增塑剂,农药,每种和多氟烷基物质(PFAS)和多环芳族芳族烃(PAH)也可以促进肥胖症 - 鉴于全球青少年肥胖症的增加,全球和包括未来心脏病(包括未来心脏病)的肥胖症的肥胖率提高,这是一个重要的考虑因素。
通过催化木质素去聚物的产生芳香单体的努力在历史上一直集中在芳基 - 醚键裂解上。然而,木质素中很大一部分的芳族单体与各种碳 - 碳(C - C)键相连,这些碳(C - C)键更具挑战性地裂解和限制木质素去聚合物的芳族单体产量。在这里,我们报告了一种催化自氧化方法,以从木质素衍生的二聚体和松树和杨树中的低聚物中裂解C - C键。该方法将锰和锌硅盐用作乙酸中的催化剂,并产生芳香族羧酸作为主要产物。在工程化的假单胞菌putida kt2440的菌株中,将含氧单体的混合物有效地转化为顺式 - 核酸,该菌株在4位时进行芳族O-二甲基化反应。这项工作表明,使用MN和ZR的木质素自氧化提供了一种催化策略,以提高木质素的宝贵芳族单体的产量。
从二维 (2D) 分子构建富含 sp3 的三维 (3D) 支架极具挑战性,但对有机合成和药物发现项目有重大影响。1 [4 + 2] 环加成反应被认为是实现此目的的有力工具,其中两个新的 s 键和一个 p 键由两个简单的不饱和反应组分二烯和亲二烯体在 3D 六元环拓扑中形成(图 1a)。2,3 事实上,这种热允许过程多年来一直是一种基本反应类型,展示了其分子复杂性产生能力。4 在这方面,多环芳烃如萘也含有交替双键。此外,它们是丰富且廉价的原料化学品。 5 然而,这些 2D 分子在 3D 复杂环加成反应中的应用有限,因为与破坏芳香性(共振能量 = 80.3 kcal mol −1 )和选择性(图 1b 和 c)赋予的稳定性相关的严峻挑战。 6 典型的萘热 [4 + 2] 环加成需要苛刻的反应条件(高温高达 210 C,压力高达 10 3 atm),7