锂离子电池现场故障 - 机制 • 潜在缺陷在电池使用过程中逐渐移动到位并产生内部短路。 • 设计不当和/或禁区操作(循环)导致阳极表面镀锂,最终对隔膜造成应力 这两种机制都很罕见,因此抓住其中一种机制甚至将良性短路的电池诱发为硬短路都是低效的。 当前的内部短路滥用测试方法可能与现场故障无关 • 机械(挤压、钉子刺穿等) • 热(散热、热循环等) • 电气(过度充电、禁区循环等) 到目前为止,还没有可靠实用的方法可以在锂离子电池中按需创建内部短路,以产生与现场故障产生的响应相关的响应。
在产品开发和设计中,故障分析有助于调试以检查无法正常工作或部分正常工作的设备。产品制造需要对测试结构和完整产品进行故障分析,以便深入了解和解决制造问题。在认证和可靠性测试中,故障分析提供了认证和可靠性测试操作条件下故障的关键信息。现场故障和客户退货通常是独一无二的,需要特殊处理和一丝不苟地关注细节。成功解决问题对于保持消费者对您的产品和公司的信心至关重要。
材料特性、环境因素和产品设计的结合可能会产生意想不到的副作用。例如,漏电流可能会随着时间的推移而增加,最终可能导致硬电弧和灾难性故障。过多的漏电流可能会在高阻抗反馈电路中产生错误,从而导致电压随时间和温度变化而漂移和稳定性问题。FR4 PWB 基板特别容易受到污染和吸收水分的影响。吸收的水分会降低 FR4 的玻璃化转变温度 (Tg),使组件在具有动态热条件的应用中容易发生现场故障。封装系统中的杂质、不正确的填料或不完全固化可能会导致过高的漏电流,这些漏电流会随时间和温度的变化而呈非线性和不稳定状态,从而可能破坏高压系统的稳定性。另一个例子是高压电路特别容易受到电化学迁移的影响。水分会促进离子腐蚀形成导电细丝。重新分布的金属离子可能会发生枝晶生长。高压应力会加速这些电化学过程(尽管锡晶须可以在没有电磁场的情况下形成)。
摘要。任何工业公司的维护经理的最终目标都是最大限度地延长生产资产的正常运行时间,并将停机时间降至最低。这些因素会影响行业满足生产期限的能力,同时仍能以最低的生产成本确保产品的质量。为了实现这一目标,需要有效的维护方法和创新的工具。先前的研究表明,当前制造技术日益复杂,需要越来越多的有能力和训练有素的人员来快速解决车间发生的中断。然而,有时很难实现有效的维修操作,尤其是当故障机器涉及各种可能的问题时,而指派熟练的技术人员和资源来处理故障设备需要的不仅仅是操作员报告的有关现场故障的信息。增强现实 (AR) 作为工业 4.0 框架中的新兴技术之一,提供了一种加速维护过程的方法,并最大限度地减少了由于操作员提供的维护信息有限而导致的维护工作重新投入。本文介绍了在新兴计算平台 Hololens 上 AR 与 CMMS 集成的应用,以展示这种集成在优化维护流程流程以提高盈利能力和竞争力方面的潜力
ESD 测试的注意事项 1) 务必使用标准测试设备。ESD 测试的可重复性本身已经非常困难,更不用说通过自制设备引入额外的未知数。对于 IEC 801-2 测试,Maxim 使用 Schaffner 的 NSG 435 ESD 枪。对于按照 MIL-STD-883 方法 3015.7 进行测试,Maxim 使用 IMCS 的 Model 4000 测试仪。 2) 在 ESD 测试之前和之后,务必对被测设备执行一整套参数测试。ESD 通常会导致灾难性的故障,但也可能引入细微的和潜在的损坏,这些损坏之后会表现为现场故障。尤其应密切监测漏电流以检测这种损坏。 3) 务必测试整个 ESD 电压范围(而不仅仅是上限)。许多 ESD 保护结构可以承受保证的最高 ESD 电压,但在较低水平下会失效。Maxim 测试每个器件引脚,从 200V 开始,以 200V 为增量递增,直到发生故障或达到 ESD 测试仪的极限。4) 务必要求性能符合所有相关标准。例如,MIL-STD-883 模拟 IC 在组装和分销(运输)过程中遇到的 ESD。仅适用于连接到本地系统外部的引脚的 IEC 801-2 模拟可能发生在终端设备中的 ESD 事件。5) 务必在通电和断电时执行 IEC 801-2 测试。一些竞争 IC(包括双极型和 CMOS)在通电时受到 ESD 事件时会出现 SCR 闩锁。SCR 闩锁可以 c
摘要 在高温和大电流条件下测试了晶圆级芯片规模封装 (WLCSP) 组件。在焊料/凸块下金属化 (UBM) 界面处观察到电迁移损坏以及加速扩散和金属间化合物生长。最终电气故障通常是由于 UBM 附近的再分布线 (RDL) 中产生空隙而发生的。温度升高、电流密度增加和 RDL 走线宽度减小会导致故障率增加。Ni UBM 焊盘和 Cu 柱结构的性能均优于 Cu UBM 焊盘。根据实验数据和其他已发表数据开发了基于 Black 方程的故障模型。然后使用该模型根据代表性现场使用条件制定加速测试和鉴定测试的推荐指南。关键词:WLCSP、电迁移。引言由于 WLCSP 外形小巧,已成为便携式产品应用中使用的 RF 降压转换器、相机闪光灯驱动器、背光驱动器和模拟开关等设备的流行封装。这些器件需要通过 BGA 焊点传输高达 2A 或更高的电流。由于电迁移导致的现场故障是限制给定器件最大额定电流的一个潜在因素。倒装芯片和 WLCSP 焊点中的电迁移故障是由于高电流密度驱动的扩散和金属间化合物反应在高温下加速而发生的 [1-34]。这些影响会产生空洞,这些空洞会随着时间的推移而打开和增长。随着空洞尺寸的增加,通过焊点的电阻会增加,最终出现开路。在大多数电迁移研究中,使用电流密度和温度的测试矩阵来比较设计或材料变量。测试通常会持续到给定支路中至少一半的单元发生故障,以便数据可以拟合对数正态分布或威布尔分布。一个典型目标是确定故障预测模型的常数,例如 Black 方程 [27]。
对金属沉积过程中的MIM顶部金属剥离的研究Chang'e Weng,Tertius Rivers,Moreen Minkoff,Ron Herring,Richard Ducusin,Richard Ducusin,Jinhong Yang Yang和Joseph Chinn Qorvo,2300 Ne Brookwook Wookwwood,Ne Brookwood Parkway,Hillsboro,Hillsboro等503-615-9820关键字:MIM,过渡流,脱皮,溅射,金属,Knudsen编号,电容器泄漏相关测试失败的电容器摘要研究揭示了金属绝缘仪金属金属(MIM)顶部金属剥离和金属沉积工具之间的相关性。简介金属 - 绝缘子 - 金属(MIM)电容是基于GAA的RF技术的重要组成部分1,2,3,4。MIM电容器由底部金属板,介电层和顶部金属板组成。MIM电容器的制造涉及多个过程步骤。互连金属零层通常用作MIM底板。在该金属下方或顶部的缺陷可能导致MIM电容器缺陷4。氮化硅或氧化物被广泛用作电容器介电层,并使用PECVD过程沉积。介电层厚度和粗糙度的变化直接影响电容器性能。蒸发或溅射的Ti/pt/au金属堆栈通常用作MIM顶部金属。由于MIM顶部金属通过层间介电VIA连接到下一个上部金属层,因此在MIM金属沉积过程中形成的缺陷也可能导致电容器和通过与通过相关的参数故障。由于MIM过程的复杂性,在过程中无法在串联检测到的缺陷可以在各种过程步骤中形成。过程取决于缺陷的性质和位置,过程控制监视器(PCM)和Diesort测试可以筛选出一些有缺陷的模具,但是除非使用更具破坏性的测试,否则可能无法检测到某些缺陷。MIM电容器的缺陷通过PCM和Diesort测试是一个可靠性的问题。手机制造商和RF设备制造公司的研究都表明,MIM电容器故障是许多早期现场故障的主要原因1,3,4。在Qorvo中,开发了一种电压斜坡方法来检测MIM电容器缺陷4。评估每个单个模具,并在低压区域4中筛选出缺陷的模具。通常需要改进过程来解决相关的测试失败。在本文中,我们讨论了迪索(Diesort)在迪索(Diesort)检测到的电容器泄漏故障的研究,该泄漏失败与MIM顶部金属剥离有关。