传感技术和数据分析工具的最新进展已显着加速了电弧添加剂制造(WAAM)系统的开发。这种以数据为中心的方法强调了在整个生产过程中可用的传感器数据以优化性能。广泛的数据分析的集成为改善精度,减少废物和提高生产零件的质量提供了机会。此方法依赖于AI/ML模型和优化技术,这些技术是使用从各种来源收集的数据(包括原位传感器,前坐姿成像和制造过程参数)开发的。这些数据的质量和多样性以及不同数据流(通过时空注册实现)之间的对齐对于成功开发AI/ML和优化模型至关重要。在这项工作中,我们提出了在矩形块沉积过程中生成的时空注册数据集。数据集包括对沉积过程,过程参数,焊接特性和原位收集的声学数据的全面描述以及构建的X射线计算机断层扫描数据。
摘要 - 这项研究解决了准确预测电动汽车能源消耗(EV)的挑战,这对于减少范围焦虑和进步的充电和能量优化至关重要。尽管当前预测方法(包括经验,基于物理和数据驱动的模型)的局限性,但本文介绍了一种新颖的基于机器学习的预测框架。它整合了物理知识的功能,并将离线全球模型与特定于车辆的在线改编相结合,以提高预测准确性并评估不确定性。我们的框架经过来自现实世界中电动汽车车队的数据的广泛测试。虽然领先的全球模型,即分位数回归神经网络(QRNN)的平均误差为6.30%,但在线适应进一步降低至5.04%,两者都超过了现有模型的性能。此外,对于95%的预测间隔,在线改编的QRNN将覆盖范围提高到91.27%,并将预测间隔的平均宽度减少到0.51。这些结果证明了利用基于物理的特征和基于车辆的在线适应来预测EV能源消耗的有效性和效率。
1. 项目摘要:SELCO 基金会是一家非盈利组织,致力于实地研发和生态系统建设,以部署清洁能源解决方案,旨在减轻部落、农村和城市贫困地区的贫困。该组织与社会部门的从业者、能源企业家以及来自各个发展部门的合作伙伴密切合作。SELCO 基金会是向印度贫困社区提供可持续能源的先驱,其方式促进资产创造和长期减贫。这些可持续能源解决方案不仅可以增加收入,还可以改善个人和家庭的生活质量,最终实现减贫。SELCO 基金会的使命是激励和实施解决方案,以社会、经济和环境可持续的方式改善印度各地服务不足社区获得可持续能源的机会,SELCO 基金会一直走在推动积极变革的前沿。
本报告是作为美国政府机构赞助的工作的记录而编写的。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文中以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文中表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
第二个目标是验证数值模型。这是通过使用 TAIA 风筝在索埃塔尼斯伯格和阿加勒斯角的多个预期地点测量风速来实现的。然后,数值模型使用阿加勒斯角的风速值对这些地点的速度进行预测,并将这些结果与测量值进行比较。结果发现,数值模型表现良好。使用 1\vo 指标来比较结果;预测误差 (m) 和相关系数 (r)。预测的平均误差为 7%,最大误差为 15.4o/o,并且发现模型在出错时往往会低估风速。测量的速度曲线与预测的速度曲线相关,发现九个站点中的八个站点的“r”介于 0.68 和 0.87 之间。