本文介绍了一种用于评估受集中力作用的三材料复合梁横向挠度的实验装置。该装置中使用的三种材料是钢、铝和木材。在本实验中,考虑了两种层粘合方法:胶合和螺栓连接。在胶合配置中,三个堆叠的层使用商用胶水沿梁长度相互连接。对于螺栓系统,各层使用四个对称分布的螺栓和螺母连接。将两种粘合方法的梁横向挠度实验结果与理论计算进行了比较。比较结果表明,胶合系统挠度数据与理论更一致。本文还采用了等效截面法来求解复合梁弯曲应力。最后,彻底研究了复合梁的关键几何和材料参数对梁弯曲应力的影响,重点是承受机械弯曲载荷的电子组件的结构分析。
由于在高压下观察到非常规超导性(TC≈80K),最近层状的钙钛矿La 3 Ni 2 O 7最近引起了广泛的关注。是为了动机,我们提出了一项基于密度功能的计算研究,加上压力的LA 3 NI 2 O 7超导体的正常电子重建的动力均值均值理论计算。我们展示了一致性 - 成分跨界行为如何表现出由于E g壳单粒子光谱函数中相当大的电子相关效应而表现出来。我们的结果捕获了电阻的依赖性,为实验中看到的新兴奇怪的金属行为提供了多种粒子的解释。我们的发现呼吁对非常规高温超导体进行更多研究,以发掘与边际费米液体近端的后果,这是管理奇怪金属运输异常的重要候选者。
摘要我们提出了一个可转移的力场(FF),用于模拟线性和环状硅氧烷的块状特性以及在金属有机框架(MOF)中这些物种的吸附。与先前的siloxanes FF不同,我们的FF可以准确地再现大量相中每个物种的蒸气平衡。使用标准的Lorentz-Berthelot结合了MOF框架原子规则,在没有开放金属位点的范围内评估了FF的质量与通用力场结合使用,与分散校正的密度功能理论计算相结合。使用此FF的预测与可用的MOF中的硅氧烷吸附的有限的实验数据相吻合。作为使用FF预测MOF中的吸附性能的一个示例,我们提出了模拟,研究了检查二进制线性和环氧烷混合物在大孔MOF中与结构代码FOTNIN中的熵效应。
模块 1 (1 小时) 简介 模块 2 (10 小时) 3-D 中的应力和应变 – 柯西公式、主应力、静水应力、偏应力、应力转换、莫尔圆、八面体剪应力、应变能密度等。 模块 3 (4 小时) 故障理论 模块 4 (3 小时) 弹性地基上的梁 模块 5 (2 小时) 曲梁的弯曲 – 起重机钩和链条 模块 6 (6 小时) 非圆形构件、空心构件、薄壁型材的扭转;膜类比 模块 8(5 小时) 柱子 - 直柱和初始弯曲柱,兰金公式 模块 9(3 小时) 能量方法 - 能量定理,使用能量理论计算挠度、扭曲、解决扭转(非圆形)问题 模块 10(2 小时) 非对称弯曲,剪切中心 模块 11(4 小时) 光弹性简介 总小时数 = 40 需要一名 RA 全职
密度泛函理论计算用于预测 Cd 基混合有机-无机高 TC 铁电钙钛矿的电子结构,TMCM-CdCl 3 是其中一种代表。我们报告了这些非磁性化合物价带中的 Rashba-Dresselhaus 自旋分裂。有趣的是,我们在计算中发现分裂不一定对材料的极化敏感,而是对有机分子本身敏感,这为通过分子的选择实现其化学可调性开辟了道路。通过在 CdCl 3 链中替换 Cl,可以进一步实现自旋分裂的化学可调性,因为发现价带源自 Cl-Cl 周键合轨道。例如,在 TMCM-CdCl 3 中用 Br 替换 Cl 导致自旋分裂增加十倍。此外,这些材料中的自旋极化产生了与极化方向耦合的持久自旋纹理,因此可以通过电场进行控制。这对于自旋电子学应用来说很有前景。
无论是通过实验还是理论,散射过程都是探索介观系统动力学的重要工具。具体来说,中子散射和 X 射线散射是常用的实验技术。反过来,理论计算可以深入解释或预测实验结果。在 Kwant 出现之前,解决凝聚态物理中散射问题最流行的方法是实施递归格林函数 (RGF) 算法。该算法于 1981 年首次推出,目的是模拟无序系统和电子传输 [1],现在已应用于密度泛函理论 [2] 等其他领域。格林函数需要紧密结合模型,例如由具有局域轨道的真实分子组成的晶格 [3]。下面,我将按照参考文献 4 的方法简要讨论格林函数形式,作为 Kwant 基于波函数的方法的序言。首先,单粒子位置自旋表达式为 [5] E − H ( x ) G ( x , x' , E ) = δ ( x − x' ) (1)
摘要:设计并制作了一种采用方形膜片、充油封装隔离的0~120 MPa压力传感器,该装置在无电路补偿的情况下非线性度优于0.4%,精度为0.43%。利用ANSYS软件对该传感器模型进行仿真,基于该模型仿真计算了压敏电阻位置变化时输出电压及非线性度的变化。仿真结果表明,随着纵向电阻(RL )相对于横向电阻(RT )的应力增大,压力传感器的非线性误差先减小到0左右后又增大。对此现象进行了理论计算和数学拟合。基于此提出了一种在保证最大灵敏度的情况下优化高压传感器非线性度的方法。在仿真中,优化模型的输出较原模型有明显的改善,非线性误差由0.106%显著降低至0.0000713%。
多元素合金纳米粒子 (MEA-NPs) 在几乎无限的成分空间中为催化剂发现带来了巨大希望。然而,合理且可控地合成这些本质上复杂的结构仍然是一个挑战。在这里,我们报告了计算辅助、熵驱动的高效耐用催化剂 MEA-NPs 的设计和合成。计算策略包括预先筛选数百万种成分、通过密度泛函理论计算预测合金形成以及通过混合蒙特卡洛和分子动力学方法检查结构稳定性。选定的成分可以在高温(例如 1500 K,0.5 s)下高效快速地合成,并具有出色的热稳定性。我们将这些 MEA-NPs 应用于催化 NH 3 分解,并观察到由于多元素混合、其小尺寸和合金相的协同效应而产生的出色性能。我们预计,计算辅助的 MEA-NPs 合理设计和快速合成可广泛应用于各种催化反应,并将加速材料发现。
在扭曲的双层系统中观察到的多样化和有趣的现象,例如石墨烯和过渡金属二核苷,引发了有关它们可能托管的新兴效应的新问题。然而,在足够大以进行光谱研究的规模上实现这些结构的实际挑战仍然是一个巨大的障碍,导致直接测量扭曲过渡金属二甲基化元素双层的电子带结构的直接测量很少。在这里,我们提出了一个系统的纳米级角度分辨光发射光谱调查,对散装,单层和扭曲的双层WS 2的光发射调查,小扭曲角为4.4°。实验结果与基于高对称方向的密度函数理论的理论计算进行了比较。出乎意料的是,电子带结构的测量表明,结构弛豫以4.4°扭曲角出现,并形成了大型,不WIST的双层区域。
这项工作研究了铜下机构对由分子束epy纳税合成的SMCO 5薄膜的磁性特性的影响。在与磁性相同的结构和组成效应的情况下,在相同的条件下生长了一系列具有不同Cu的薄膜。合并的实验和口学研究表明,CO 3 g位点的Cu取代不仅稳定了SMCO 5结构的形成,还可以增强磁各向异性和矫正性。密度功能理论计算表明,SM(CO 4 Cu 3 G)5具有较高的单离子各向异性,作为纯SMCO 5。此外,X射线杂志 - 网络二色性均表明,Cu取代会导致SM 4 F和CO 3 d矩的脱钩。扫描传输电子显微镜证实主要是SMCO 5相的形成,并揭示了Cu和CO分布中的纳米级不均匀性。我们的研究基于薄膜