印尼市场上出售的聚合物基质复合屋面材料通常由 30%wt 短切毡玻璃纤维嵌入不饱和聚酯树脂中,并填充 30 PHR 碳酸钙。这项研究的目的是评估天然苎麻纤维是否有可能取代玻璃纤维。在研究的第一阶段,我们比较了印尼丰富的三种天然纤维:香蕉茎纤维、甘蔗渣和苎麻。结果表明苎麻纤维的性能最佳。其弯曲强度、弯曲模量和冲击韧性最高,分别为 191.57 MPa、6691 MPa 和 0.056 J/mm²。在第二阶段,我们生产了与商用屋面材料成分相同的复合材料样品,但用苎麻纤维代替了玻璃纤维。与不含苎麻纤维的材料相比,用苎麻纤维增强的复合材料的抗拉强度从 34.62 MPa 增加到 47.53 MPa,14 天内的最大吸水率从 1.145% 增加到 3.746%,声音传输等级从 23 dB 提高到 26 dB。此外,苎麻纤维对复合材料的密度没有显著影响。然而,加入苎麻纤维会导致弹性模量从 1630 MPa 降低到 1324 MPa,TGA 检测中的质量损失更高,为 86.95%,而 74.65% 则为 74.65%。苎麻纤维复合材料达到了 40 MPa 抗拉强度的最低屋顶要求,因此有可能取代玻璃纤维。
胰岛素代谢在胰腺β细胞中的失调需要对糖尿病患者(DM)使用外源性胰岛素注射(DM)使用外源性胰岛素。但是,这种注射经常与某些挑战有关,例如降血糖事件和身体不适。这项研究的目的是通过智能材料金属有机框架(MOF-5)设计一个新型的胰岛素输送平台,该平台纳入了溶解微针(DMN),作为一种更有效且较小的侵入性替代方案。在这方面,DMN制造使用纤维素纳米晶体(CNC),这些纳米晶体(CNC)来自甘蔗渣生物质的改良纤维素。本研究的发现表明,X射线衍射(XRD)分析证实了CNC的成功合成,结晶度指数为57%。MOF-5的掺入以多孔和响应材料为特征,可显着提高胰岛素的递送效率。扫描电子显微镜 - 能量色散X射线光谱(SEM-EDX)证实了MOF-5的孔结构的发展,并针对微针的应用优化了形态。此外,MOF-5的XRD分析表示64%的结晶度指数,反映了其结构完整性。MOF-5用作释放调节剂,确保持续的胰岛素给药并减轻过度释放的风险。将DMN与MOF-5整合在一起,为糖尿病管理提供了高效且微创胰岛素输送方法。体外实验表明,在8小时内,受控胰岛素释放了78%,而体内研究表明使用MOF-INS配方在动物模型中逐渐和受控的血糖调节。
通过不断改进电极材料和电解质的性能来提升超级电容器的性能。12在电极材料方面,常见的电极材料有(i)碳、(ii)金属氧化物和(iii)导电聚合物。13,14与金属氧化物和导电聚合物相比,碳材料具有比表面积大、中/微孔率高、无毒、化学稳定性高、导电性好,能加速电解质离子的扩散,15,16因此碳基材料的研究备受关注。常见的碳基材料包括生物质、碳纤维、炭黑、碳气凝胶、碳纳米管、石墨烯等。17对于碳纤维、石墨烯、碳气凝胶、碳纳米管等,由于其成本高、碳前驱体不可再生、合成工艺复杂,无法用于商业化。 18 – 20 而生物质基碳恰好可以弥补这些不足。生物质具有天然结构,具有天然多级孔隙,这使得生物质基碳的合成比其他碳材料更容易、更安全、更便宜、更绿色。此外,生物质资源丰富,可再生。21 – 23 基于以上事实,可以推断生物质是应用于超级电容器的电极材料的良好前驱体。24 目前,多种生物质已被用作超级电容器碳材料的前驱体,例如竹子、头发、小麦、甘蔗渣、橘皮、丝绸、猪骨等。11,21,25 虽然大多数生物质基碳具有良好的电化学性能,但它们仍存在区域分布有限、生产、收集和运输困难等缺点,这可能会限制其进一步的工业化。25 – 28
SB 1764 制定了 s. 377.814, FS,在农业和消费者服务部 (DACS) 内建立市政固体废物转化为能源计划,包括一项财政援助补助计划和一项激励补助计划。该计划的既定目的是向市政固体废物转化为能源 (MSWE) 设施提供财政援助补助和激励补助,以激励能源的生产和销售并减少在垃圾填埋场处理的废物。该法案将“市政固体废物转化为能源设施”定义为公有或政府附属机构拥有的设施,使用带有受控燃烧的封闭设备将固体废物热分解为几乎不含或不含可燃物质的灰烬残留物,产生电能、蒸汽或其他能源。它不包括主要燃烧固体废物以外燃料的设施;也不包括主要燃烧植物、农业或林业废物、甘蔗渣、干木材、甲烷或其他垃圾填埋气、建筑或拆除碎片产生的木质燃料或废轮胎(单独或与化石燃料结合)的设施。财政援助补助金将为 MSWE 设施提供资金,其费率为电力公司在上一州财政年度购买的每千瓦时电力 2 美分,不得超过电力公司避免的成本与商业零售价之间的差额。如果资金不足以支付所有合格申请人的每一千瓦时合格电力,DACS 必须公平地按比例分配可用资金,同时考虑适用服务区域内的商业零售价。要获得资格,该设施必须事先与电力公司签订了电力购买协议,其中包括设施将不再根据协议收到的容量付款。设施所有者必须向 DACS 提交申请,包括 MSWE
归入“发行人不合作”类别 附件 1 中的工具/设施详情 *发行人不合作;基于最佳可用信息 理由和关键评级驱动因素 CARE Ratings Ltd. 已在其 2022 年 12 月 22 日的新闻稿中将 Pravara Renewable Energy Limited (PREL) 的评级归入“发行人不合作”类别,因为 PREL 未能提供评级监控信息,也没有按照其评级协议中的约定支付评级活动的监控费用。尽管通过电子邮件、电话和 2023 年 11 月 7 日、2023 年 11 月 17 日、2023 年 11 月 27 日的信函/电子邮件多次要求 PREL 提交信息,但 PREL 仍然不合作。根据现行的 SEBI 指南,CARE Ratings Ltd. 已根据最佳可用信息审查了评级,但 CARE Ratings Ltd. 认为,这些信息不足以得出公平评级。因此,请此评级的用户(包括投资者、贷方和广大公众)在使用上述评级时谨慎行事。分析方法:独立 展望:不适用 关键评级驱动因素的详细描述:请参阅 2022 年 12 月 22 日的 PR 适用标准 CARE 评级关于信息充分性风险和发行人不合作的标准 违约确认政策 关于公司 Pravara Renewable Energy Limited (PREL) 是一家特殊目的公司,是 Gammon Infrastructure Projects Limited (GIPL) 的全资子公司,旨在以建设、拥有、运营和转让的方式在马哈拉施特拉邦艾哈迈德讷格尔区 Pravaranagar 的 Padmashri Dr. Vithalrao Vikhe Patil、Sahakari Sakhar Karkhana Limited (Karkhana) 糖厂附近实施 30 兆瓦甘蔗渣热电联产项目 (BOOT)。
通过曲霉sp。在生产和表征β-糖苷酶的生产和表征中使用农业废物。在固态种植中,爱德华多·达·席尔瓦·马丁斯(Eduardo Da Silva Martins); Heytor Lemos Martins摘要至β-糖苷酶是具有各种工业应用的纤维素分解酶,例如在果汁,葡萄酒和生物燃料生产行业中。这项工作旨在评估真菌Aspergillus sp的农业工业废物使用的潜力。并确定培养参数以增加酶活性。评估了以下参数:底物类型,培养时间,补充营养溶液,养分溶液pH,初始底物湿度和真菌孵育温度。在发现的最佳状态下,酶的特征是与pH和最佳温度以及对这些因素的稳定性有关。β-糖苷酶活性值在由小麦麸皮和甘蔗渣(1:1 p/p)组成的底物(1:1 p/p),小麦麸皮和麦芽渣(1:1 p/p)(1:1 p/p)以及三种底物的混合物中(1:1:1 p/p)的混合物中,与作物和袋装混合物的混合物中,β-糖苷酶活性显示出显着差异。麦芽(1:1 w/p)。 酶活性在以下培养条件下较高:由Nh 4中的NH 4组成的营养溶液,MGSO 4 .7H 2 O和(NH 4)2 SO 4(0.1%),pH 4.5和5.5,真菌在35°C下的真菌孵育温度,初始底物水分为65%。 酶在4.5和5.5之间的pH范围内显示出较高的活性,并且稳定性范围很广(3.0至8.0)。 ,2021)。β-糖苷酶活性显示出显着差异。麦芽(1:1 w/p)。酶活性在以下培养条件下较高:由Nh 4中的NH 4组成的营养溶液,MGSO 4 .7H 2 O和(NH 4)2 SO 4(0.1%),pH 4.5和5.5,真菌在35°C下的真菌孵育温度,初始底物水分为65%。酶在4.5和5.5之间的pH范围内显示出较高的活性,并且稳定性范围很广(3.0至8.0)。,2021)。最佳温度为65°C,酶的稳定性超过70%,至1H,最高为55°C。使用农业废物为真菌提供了高产生β-糖苷酶的生产,具有具有工业应用潜力的酶。关键字:木质纤维素材料;酶;细胞;菌;生物降解。1引言β-糖苷酶是在各种生物体中执行生化,生理和营养功能的纤维素酶。从了解其作用机理的知识中,正在制作各种工业应用,例如生物燃料生产的木质纤维素水解;水果和葡萄酒中的糖苷水解以改善香气;来自糖苷结合物的生物活性敏捷的合成;以及有用的化妆品和洗涤剂成分的烷基糖苷的生产(Godse等人可以使用适当的碳和氮来源和低成本来实现生产成本的降低和纤维素性能的改善。因此,使用农业废物在获取酶中可以减少其全球生产成本。此外,从环境的角度来看,这些废物在生物过程中的应用变得很重要,从而减少了与其管理不足和随之而来的环境损害有关的问题(Santos等人,2016年; Devi等。,2022)。
植物皮革具有极大的潜力,可以为气候友好,环保,无残酷的可持续时装行业做出贡献。植物性皮革被证明是一种多功能且高质量的材料,可用于制作美丽而时尚的服装。可以使用各种植物和植物材料(例如仙人掌(甜点;墨西哥),甘蔗甘蔗渣,菠萝(Piñatex;泰国),蘑菇(Mylo),玉米皮革-VEJA(意大利语),椰子水(Malai)(Malai)(hemai),hemai sateiv sativeiv saterif(fiber),可以使用 。番茄(生物皮革),干腰花,橡树树皮和叶子,苹果,柚木叶,香蕉叶(Banafi),葡萄,橙皮废物,软木橡树,(葡萄牙),黄麻纤维,脆弱的叶子,脆弱的叶子,贝雷克·贝特尔树(Areca Betel betel Tree)(棕榈果皮)和咖啡壳。 铬晒黑是最常见的方法,但这会产生具有高浓度的有毒铬和硫化物的废水,以及通常用于保护晒黑之前保护皮的农药。 这些化学物质会增加化学氧需求(COD),生物氧需求(BOD)和总溶解的固体(TDS)水水平,因此是有害的。 这种六价铬,Cr 6+是可溶,有毒的,诱变的,四元的,并且由于其高氧化潜力而对人类健康产生了许多负面影响。 现在,消费者已经越来越意识到这些问题,从而导致对环保和可持续材料的需求不断上升。 Bio-Bio Leather由可再生和自然资源(例如植物)制成。。番茄(生物皮革),干腰花,橡树树皮和叶子,苹果,柚木叶,香蕉叶(Banafi),葡萄,橙皮废物,软木橡树,(葡萄牙),黄麻纤维,脆弱的叶子,脆弱的叶子,贝雷克·贝特尔树(Areca Betel betel Tree)(棕榈果皮)和咖啡壳。 铬晒黑是最常见的方法,但这会产生具有高浓度的有毒铬和硫化物的废水,以及通常用于保护晒黑之前保护皮的农药。 这些化学物质会增加化学氧需求(COD),生物氧需求(BOD)和总溶解的固体(TDS)水水平,因此是有害的。 这种六价铬,Cr 6+是可溶,有毒的,诱变的,四元的,并且由于其高氧化潜力而对人类健康产生了许多负面影响。 现在,消费者已经越来越意识到这些问题,从而导致对环保和可持续材料的需求不断上升。 Bio-Bio Leather由可再生和自然资源(例如植物)制成。。番茄(生物皮革),干腰花,橡树树皮和叶子,苹果,柚木叶,香蕉叶(Banafi),葡萄,橙皮废物,软木橡树,(葡萄牙),黄麻纤维,脆弱的叶子,脆弱的叶子,贝雷克·贝特尔树(Areca Betel betel Tree)(棕榈果皮)和咖啡壳。铬晒黑是最常见的方法,但这会产生具有高浓度的有毒铬和硫化物的废水,以及通常用于保护晒黑之前保护皮的农药。这些化学物质会增加化学氧需求(COD),生物氧需求(BOD)和总溶解的固体(TDS)水水平,因此是有害的。这种六价铬,Cr 6+是可溶,有毒的,诱变的,四元的,并且由于其高氧化潜力而对人类健康产生了许多负面影响。现在,消费者已经越来越意识到这些问题,从而导致对环保和可持续材料的需求不断上升。Bio-Bio Leather由可再生和自然资源(例如植物)制成。
图 30:陆上风电和光伏太阳能项目国内 O&M 成本参考 P50 值的演变,单位为 BRL/kW.年 ................................................................................................................................ 19 图 31:2020 年国内 O&M 成本参考值分布,单位为 BRL/kW.年 ................................................................................................................................ 19 图 32:小水电项目 CAPEX 值演变,单位为 BRL/kW ............................................................................................................................. 20 图 33:2017 年至 2020 年 PCH 和 CGH 项目 CAPEX 值的地理分布 ............................................................................................................. 21 图 34:PCH 和 CGH 项目 CAPEX 值演变,单位为 BRL/kWmed ............................................................................................................. 21 图 35:PCH 和 CGH 项目 CAPEX 值细分 ............................................................................................................. 22 图 36:PCH 和 CGH 项目固定 O&M 值演变,单位为 BRL/kW.年. 22 图 37:PCH 和 CGH 项目可变 O&M 价值的演变,单位为 BRL/MWh 23 图 38:2019 年拍卖中 PCH 和 CGH 中标项目的 CAPEX 价值的应计分布 ............................................................................................................................. 23 图 39:2019 年拍卖中 PCH 和 CGH 中标项目的 O&M 价值的应计分布 ............................................................................................................................. 24 图 40:2010 年至 2014 年以及 2015 年至 2019 年按容量划分的小型和大型水电站项目总安装成本分布 ............................................................................................. 24 图 41:PCH 和 CGH 项目的国际和国内 CAPEX 和 O&M 价值比较 - 按名义汇率换算 ............................................................................................................. 25 图 43:近年来参与能源拍卖的生物质热电项目数量......................................................................................................................................... 26 图 44:2010 年至 2020 年资本支出 (CAPEX) 值分布,单位为 BRL/kW ............................................................................. 26 图 45:2016 年至 2020 年资本支出 (CAPEX) 值分布,单位为 BRL/kW ............................................................................. 27 图 46:2016 年至 2020 年资本支出 (CAPEX) 值分布,单位为 BRL/kWmed ............................................................................. 27 图 47:生物质热电项目 (燃料:甘蔗渣) 资本支出价值构成演变 – 2010 年至 2020 年期间 ............................................................................... 28 图 49:2016 年至 2020 年期间固定 O&M 价值分布,单位为 BRL/kW.year ......................................................................................................................................... 29 图 50:2016 年至 2020 年期间可变 O&M 价值的演变,单位为 BRL/MWh . 29 图 51:2010 年至 2020 年生物质热电厂 – 木片 CVU 值分布 ............................................................................................................................. 30 图 52:生物质发电项目的资本支出,按技术和国家/地区划分 30 图 53:2000 年至 2019 年生物质发电项目资本支出分布,按技术和国家划分 ............................................................................................................................. 31 图 54:生物质热电项目的国际和国内 CAPEX 和 O&M 值比较 - 按名义汇率换算 ............................................................................................. 31 图 55:生物质热电项目的国际和国内 CAPEX 和 O&M 值比较 - 按 PPP 汇率换算 ............................................................................................. 32 图 56:2010 年至 2020 年 CAPEX 值分布,单位为 BRL/kW ............................................................................................. 32 图 57:2010 年至 2020 年 CAPEX 值分布,单位为 BRL/kW 2016 年至 2020 年 ...................................... 33 图 58:2016 年至 2020 年天然气热电项目资本支出价值分布 ................................................................................................................ 33 图 59:2016 年至 2020 年 O&M 价值分布,单位:巴西雷亚尔/千瓦.年 ................................................................................................................................ 342016 年至 2020 年资本支出 (CAPEX) 值分布,单位:巴西雷亚尔/千瓦 ................................................................................................................ 33 图 58:2016 年至 2020 年天然气热电项目资本支出值细目 ............................................................................................................................. 33 图 59:2016 年至 2020 年运营和维护 (O&M) 值分布,单位:巴西雷亚尔/千瓦.年 ................................................................................................................ 342016 年至 2020 年资本支出 (CAPEX) 值分布,单位:巴西雷亚尔/千瓦 ................................................................................................................ 33 图 58:2016 年至 2020 年天然气热电项目资本支出值细目 ............................................................................................................................. 33 图 59:2016 年至 2020 年运营和维护 (O&M) 值分布,单位:巴西雷亚尔/千瓦.年 ................................................................................................................ 34