1。根据科学进步,改变监管需求和动物福利的考虑,定期审查了化学物质测试的OECD测试指南。最初的测试指南488在2011年采用。在2013年,采用了修订的指南,以更新:治疗开始时动物的年龄范围;将要收集的生殖道的部分用于精子收集;并且,啮齿动物精子干细胞成为成熟精子并到达尾子肌的正确时间。 在2020年,采用了修订的指南,该指南更新了推荐方案,以分析男性生殖细胞的突变。 目前对测试指南(TG)的修订重点是整合体细胞组织和生殖细胞中突变的分析,并与最近修订的OECD测试指南(TGS)协调进行遗传毒性测试。在2013年,采用了修订的指南,以更新:治疗开始时动物的年龄范围;将要收集的生殖道的部分用于精子收集;并且,啮齿动物精子干细胞成为成熟精子并到达尾子肌的正确时间。在2020年,采用了修订的指南,该指南更新了推荐方案,以分析男性生殖细胞的突变。目前对测试指南(TG)的修订重点是整合体细胞组织和生殖细胞中突变的分析,并与最近修订的OECD测试指南(TGS)协调进行遗传毒性测试。
不育症是一个研究领域,近年来一直引起关注,以及出生率下降的问题。另一方面,自闭症是一种发育障碍,具有诸如沟通障碍和有限的利益和偏好之类的特征,并且是干扰社会生活的疾病,随着患者的数量增加,它已成为一个主要的社会问题。尽管最近有几份报告表明自闭症患者的妊娠率较低,但目前尚不清楚这两种疾病是如何相关的。该研究小组的重点是蛋白质CHD8,这是自闭症患者中最常见的突变。结果,我们发现引起自闭症的蛋白质CHD8不仅在大脑中,而且在睾丸,生殖器中都强烈表达。此外,当CHD8缺乏生殖细胞时,睾丸显着降低,导致不育,几乎没有生成精子。特别是,发现缺乏CHD8的生殖细胞会干扰减数分裂的进展(*2)。此外,基因表达分析表明,CHD8调节PRDM9(*4)的表达水平,一种组蛋白甲基化修饰酶,即使在转移期间,DNA双链断裂也需要DNA双链断裂(*3)。我们发现CHD8通过调节PRDM9调节减数分裂的进展,并且对正常的精子发生至关重要。有趣的是,已知CHD8通过组蛋白甲基化修饰参与自闭症的发展。在这项研究中,我们发现CHD8通过组蛋白甲基化修饰的共同机制有助于不同疾病(例如自闭症和不育)的发展。预计这项研究将导致治疗的发展,并阐明已成为自闭症和不育等主要社会问题的疾病机制。
Goro Yoshizaki博士是东京海洋科学技术大学(TUMSAT)(日本)的水生生物物种生殖生物技术研究所(IRBAS)现任主任。他完成了B.Sc.1988年从东京渔业大学获得水产养殖,并于1993年获得同一大学的博士学位。 他的研究生研究专注于使用彩虹鳟鱼的转基因技术的发展。 后来他加入了美国的德克萨斯理工大学,是一名博士后研究员,他的研究重点是阐明鱼类,两栖动物和哺乳动物中卵母细胞成熟的机制。 1995年,Yoshizaki博士被任命为东京渔业大学的助理教授。 随后,他于2012年成为Tumsat的教授,并于2020年成为IRBAS主任。 迄今为止,他已经发表了250多个同行评审的论文,并监督了83个硕士和21 ph。 D.学生。 除了他对生殖细胞操纵技术的研究外,吉扎基博士还积极从事有关鱼类脂肪酸代谢的研究。 此外,他是日本海洋生物技术学会的现任主席。1988年从东京渔业大学获得水产养殖,并于1993年获得同一大学的博士学位。他的研究生研究专注于使用彩虹鳟鱼的转基因技术的发展。后来他加入了美国的德克萨斯理工大学,是一名博士后研究员,他的研究重点是阐明鱼类,两栖动物和哺乳动物中卵母细胞成熟的机制。1995年,Yoshizaki博士被任命为东京渔业大学的助理教授。 随后,他于2012年成为Tumsat的教授,并于2020年成为IRBAS主任。 迄今为止,他已经发表了250多个同行评审的论文,并监督了83个硕士和21 ph。 D.学生。 除了他对生殖细胞操纵技术的研究外,吉扎基博士还积极从事有关鱼类脂肪酸代谢的研究。 此外,他是日本海洋生物技术学会的现任主席。1995年,Yoshizaki博士被任命为东京渔业大学的助理教授。随后,他于2012年成为Tumsat的教授,并于2020年成为IRBAS主任。迄今为止,他已经发表了250多个同行评审的论文,并监督了83个硕士和21 ph。D.学生。除了他对生殖细胞操纵技术的研究外,吉扎基博士还积极从事有关鱼类脂肪酸代谢的研究。此外,他是日本海洋生物技术学会的现任主席。
图4。睾丸癌通常具有良好的存活率,但是GCM1高表达的患者在睾丸生殖细胞肿瘤中的生存率较差(HR = 6.3)。类似地,对于宫颈SQC癌(图5A),肾脏肾细胞癌(图5B),肝肝细胞癌(图5C),胰腺导管ADC(图5D),肾脏肝细胞癌(图5D),ADC(图5E)(图5E)。GCM1胃中ADC中的突变导致预后不良(图5F),并显示宫颈SQC癌的阴性生存趋势(图5G)。
长散布元件 1 (L1) 逆转录转座子是一种转座元件,能够通过 RNA 中间体和逆转录步骤的复制粘贴机制在基因组内传播。它们存在于许多真核生物谱系中,但在哺乳动物中一直特别活跃,并且仍然如此,充当着强大的内源诱变剂。它们被细胞核和细胞质中的多层转录和转录后机制强烈抑制,从而限制了它们在生殖细胞、早期胚胎和一组非常狭窄的成人体细胞中的表达和动员。尽管如此,其中一些元件设法挣脱这些锁并插入新的基因组位置,通常落在内含子中,有时会导致遗传疾病 1 。
当前,飞速发展的计算机和数字技术正在进入生活的各个领域。人工智能的快速发展和广泛应用促进了人工智能系统的发展和完善,使得解决科学、技术、医学等各个领域的复杂问题成为可能。本文探讨了人工智能系统的术语和原理,以及在其基础上创建的技术的现代可能性和前景,及其在生殖医学中应用的方向,以解决各种科学问题和实际任务。它们可用于各种疾病和并发症的诊断和风险评估、基因检测及其结果的评估、预测怀孕和评估生育能力、分析生殖细胞、以及选择体外受精计划中获得的最高质量的胚胎,以及解决其他问题。
1 癌症生物学和表观遗传学组、IPO 波尔图研究中心 (GEBC CI-IPOP)、葡萄牙波尔图肿瘤研究所 (IPO Porto) 和波尔图综合癌症中心 (P.CCC)、R. Dr.安东尼奥·贝尔纳迪诺·德阿尔梅达,4200-072波尔图,葡萄牙; jpedro.lobo@ipoporto.min-saude.pt (JL); ana.almeida.cardoso@ipoporto.min-saude.pt (ARC); vera.miranda.goncalves@ipoporto.min-saude.pt (VM-G.) 2 葡萄牙波尔图肿瘤研究所 (IPOP) 病理学系,R. Dr. António Bernardino de Almeida,4200-072 波尔图,葡萄牙 3 波尔图大学阿贝尔萨拉萨尔生物医学科学研究所(ICBAS-UP)病理学和分子免疫学系,Rua Jorge Viterbo Ferreira 228,4050-513 波尔图,葡萄牙 4 Princess M á xima 儿科肿瘤中心,Heidelberglaan 25,3584 CS 乌得勒支,荷兰; l.looijenga@prinsesmaximacentrum.nl 5 波尔图大学 Abel Salazar 生物医学科学研究所 (ICBAS-UP),Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, 葡萄牙 6 蒙彼利埃大学 CNRS Max Mousseron 生物分子研究所 (IBMM),ENSCM UMR 5247,34296 Montpellier, 法国; marie.lopez@cnrs.fr 7 表观遗传化学生物学,巴斯德研究所,CNRS UMR3523,75724 巴黎,法国; paola.arimondo@cnrs.fr * 通信地址:henrique@ipoporto.min-saude.pt (HR); carmenjeronimo@ipoporto.min-saude.pt (CJ);电话:+351-222-2508-4000(人力资源和 CJ);传真:+351-225-084-199 (HR 和 CJ) † 第一作者共享。 ‡ 联合资深作者。
摘要:自从德里克·帕菲特的《理由与人》出版以来,生物伦理学家倾向于区分生殖技术对未来人类福祉可能产生的两种不同影响。一些干预措施会伤害或使特定个体受益:它们是“影响人的”。其他干预措施决定了在众多可能的个体中哪一个个体会出现:它们是“影响身份的”,并引发了著名的“非身份问题”。在过去的几十年里,生物伦理学争论在很大程度上是基于这样的假设进行的:直接对人类胚胎进行基因改造会对人产生影响。在本文中,我认为基因组编辑在可预见的未来极不可能对人产生影响,因此,它既不会给被编辑的个体带来好处,也不会伤害它们。
1 验尸官 我是蒂赛德和哈特尔普尔验尸官区的高级验尸官 Clare Bailey 2 验尸官的法律权力 我根据《2009 年验尸官和司法法》附表 5 第 7 段和《2013 年验尸官(调查)条例》第 28 和 29 条作出此报告。 3 调查和审讯 凯特·伊丽莎白·奥唐纳于 2022 年 3 月 23 日在米德尔斯堡詹姆斯库克大学医院去世。我对她的死因展开了调查。2024 年 1 月 17 日和 18 日,我对她的去世进行了审讯。 她的死亡医学原因是: 1a. 多器官衰竭 1b. 全身性脓毒症 II. 颅内生殖细胞肿瘤化放疗后垂体功能减退。我留下了如下叙述结论 - 凯特·伊丽莎白·奥唐纳于 2022 年 3 月 16 日在詹姆斯库克大学医院接受了手术。她于 2022 年 3 月 17 日出院回家。她因手术患上败血症,并于 2022 年 3 月 23 日在詹姆斯库克大学医院去世。败血症源于她的肠道。未能对胃肠手术给予预防性抗生素导致了她的死亡。4 死亡情况奥唐纳小姐的既往病史包括生殖细胞脑瘤,在 4、7 和 9 岁时复发。她接受了化疗和放疗。9 岁时,她接受了高剂量的化疗,结果腰部以下瘫痪。她忍受着由此产生的慢性神经疼痛/损伤,并被开具了高剂量的每日止痛药。奥唐纳小姐有双重大小便失禁。治疗从间歇性导尿管变为耻骨上导尿管。
在鸡中,原始生殖细胞 (PGC) 是基因敲入等高级基因组编辑的有效靶点。尽管已经建立了鸡 PGC 的长期培养系统,但仍有必要选择一种高效、精确的基因编辑工具来编辑 PGC 基因组,同时保持其对生殖系统的贡献能力。与传统用于生成敲入鸡的同源重组方法相比,成簇的规律间隔短回文重复序列 (CRISPR)/CRISPR 相关蛋白 9 (Cas9) 和 CRISPR 介导的精确整合到目标染色体 (CRIS-PITCh) 方法更胜一筹,因为供体载体更易于构建、基因组编辑效率高,并且不会选择目标细胞。在本研究中,我们利用 CRIS-PITCh 方法将荧光蛋白基因盒作为融合蛋白整合到鸡 PGC 的鸡血管同源物 ( CVH ) 基因座中,从而设计了敲入鸡 PGC。敲入 PGC 在体内和体外均表达荧光蛋白,便于对 PGC 进行追踪。此外,我们还表征了设计双敲入细胞系的效率。通过有限稀释获得敲入细胞克隆,并通过基因分型确认设计双敲入细胞系的效率。我们发现 82% 的分析克隆都成功敲入了两个等位基因。我们认为,从敲入 PGC 中生产模型鸡可用于各种研究,例如阐明鸡的生殖细胞命运和性别决定。