• 特性:-- 玻璃的 T m 适中,但其他陶瓷的 T m 较大。-- 韧性小,延展性好;模量大,抗蠕变。• 应用:-- 高 T ,耐磨,由于电中性而具有新用途。• 制造 - 某些玻璃可轻松成型 - 其他陶瓷无法成型或铸造。
考虑了基于材料的自旋阀,其中自旋翻转通过电荷载流子的空间分离而受到抑制,同时保持阀体积的电中性。讨论了将这些阀用作电池的可能性。结果表明,如果控制阀两端的电位差,可能会出现“魔鬼阶梯”等不相容性效应,这与电池充电和放电时发生的库仑相互作用和电子重新分布有关。预测了随着阀中费米能级的变化,传导电子的自发自旋极化的出现和消失的影响。这种自旋阀还可用于实现自旋电子存储单元、超级电容器和类似设备。
铁电体中的非均匀极化纹理为丰富的新材料物理学提供了沃土。非均匀极化分布的含义之一是在极化不连续处或一般在极化矢量场发散非零的点处出现束缚电荷。束缚电荷会感应出能量耗费很大的电场。因此,无论极化分布多么复杂,系统都倾向于保持其内部的电中性。那么中性意味着要么极化矢量场应该无发散,要么束缚电荷应该受到半导体性质的自由载流子的屏蔽。非均匀且几乎无发散的极化纹理主要见于多轴铁电体 [1,2],其中自发极化矢量可以旋转。
铁电体中的非均匀极化纹理为丰富的新材料物理学提供了沃土。非均匀极化分布的含义之一是在极化不连续处或一般在极化矢量场发散非零的点处出现束缚电荷。束缚电荷会感应出能量耗费很大的电场。因此,无论极化分布多么复杂,系统都倾向于保持其内部的电中性。那么中性意味着要么极化矢量场应该无发散,要么束缚电荷应该受到半导体性质的自由载流子的屏蔽。非均匀且几乎无发散的极化纹理主要见于多轴铁电体 [1,2],其中自发极化矢量可以旋转。
电磁 (EM) 辐射光谱被划分为一些任意的频率区域(图 15-1)。光谱划分通常基于辐射的起源过程以及辐射与物质相互作用的方式。最有用的划分是电离辐射(X 射线、伽马射线和宇宙射线)和非电离辐射(紫外线 [UV] 辐射、可见光辐射、红外线 [IR] 辐射和射频 [RF] 波)。电离辐射和非电离辐射之间的划分通常被接受为波长 (λ) 约为 1 nm,在远紫外区域。当围绕稳定原子运行的电子被驱逐时,就会发生物质电离。所有元素的原子都可以电离,但只有伽马射线、X 射线、α 粒子和 β 粒子具有足够的能量来产生离子。由于离子是带电粒子,因此它们的化学活性比电中性形式更高。发生在
当电中性相限制在纳米通道内流动时,由表面属性控制的电双层 (EDL) 中的电荷分布将屏蔽共离子,因此多余离子的迁移会导致纳米通道两端之间的电流或电压差异。人们做出了一些努力来优化纳米流体通道的几何形状和表面化学,以操纵分子或离子的传输行为。12 – 15 由于各种分子力引入了复杂的流体行为,较低的效率限制了稀电解质中废热的利用。8,9 从受限结构中的废热中回收机械能或电能的潜在机制已经得到了广泛的研究。16 – 18 Li 等人。通过分子动力学模拟研究了纳米通道中温度梯度驱动的流体输送机制,发现流体壁结合能对流动方向起着关键作用。19
诱发电位 (EP) 是嵌入自发性脑电图活动 (EEG) 中的离散信号。从噪声中提取它们需要重复记录。视觉或听觉刺激触发采集系统,然后收集“诱发电位”。诱发电位不同于自发性神经活动 (EEG),因为它与触发“事件”同步。实际上,触发事件的信号用于采集诱发电位信号。诱发电位 (PE) 被定义为大脑有限区域相对于另一个电中性区域的电势的瞬态变化。EP 由放置在活动结构发出的电场中的电极捕获,并与所谓的“参考”电极检测到的电位进行比较。当参考电极捕获脑神经活动时,传感器系统称为双极。另一方面,当参考电极位于没有大脑活动的区域(例如耳垂)时,传感器系统称为单极。在最好的情况下,我们刚才看到的感兴趣的诱发电位 (PE) 是在离源很远的地方捕获的,其幅度非常小,不超过十微伏。此外,它嵌入在电极捕获的连续大脑活动(EEG 高于 100 微伏)中。PE 有时低于放大器的背景。因此,在检查其特性之前,有必要从背景噪声中提取 PE。40 年来使用的经典方法是平均法。该方法由同步连续响应的平均值组成。诱发电位是一种根据受试者的注意力而发展的大脑活动,因此平均值不足以令人满意地研究它。
腔量子电动力学通过将谐振器与非线性发射器 1 耦合来探索光的粒度,在现代量子信息科学和技术的发展中发挥了基础性作用。与此同时,凝聚态物理学领域因发现底层拓扑 2 – 4 而发生了革命性的变化,这种拓扑变化通常源于时间反演对称性的破缺,例如量子霍尔效应。在这项工作中,我们探索了拓扑非平凡的 Harper-Hofstadter 晶格 5 中 transmon 量子比特的腔量子电动力学。我们组装了铌超导谐振器 6 的晶格,并通过引入亚铁磁体 7 来破缺时间反演对称性,然后再将系统耦合到 transmon 量子比特。我们用光谱方法分辨晶格的各个体模式和边缘模式,检测激发的 transmon 和每个模式之间的 Rabi 振荡,并测量 transmon 的合成真空诱导兰姆位移。最后,我们展示了利用 transmon 计数拓扑能带结构每个模式内单个光子 8 的能力。这项工作开辟了实验手性量子光学 9 领域,使微波光子的拓扑多体物理成为可能 10,11,并为背向散射弹性量子通信提供了途径。由光构成的材料是量子多体物理学的一个前沿 12 。依靠非线性发射器来产生强光子 - 光子相互作用和超低损耗超材料来操纵单个光子的属性,这个领域探索了凝聚态物理和量子光学的接口,同时生产用于操纵光的设备 13,14。最新研究成果表明,光子在具有拓扑特性15的光子中会经历圆形时间反转破缺轨道,这为探索诸如(分数)量子霍尔效应2、3、Abrikosov晶格16和拓扑绝缘体4等固态现象的光子类似物提供了机会。在电子材料中,圆形电子轨道是由磁或自旋轨道耦合4产生的。与电子不同,光子是电中性物体,因此不会直接与磁场耦合。因此,人们正在努力为光子生成合成磁场,并更广泛地探索在合成光子平台中拓扑量子物质的概念。光学和微波拓扑光子学都在这一领域取得了重大进展。在硅光子学 17、18 和光学 19、20 中,通过在偏振或空间模式中编码伪自旋,已经实现了合成规范场,同时保持了时间反转对称性。在射频和微波超材料中,已经探索了具有时间反转对称性 21、22 和破缺时间反转对称性的模型,其中时间反转对称性破缺由以下因素引起: