半导体量子点 (QDs) 是量子信息和量子计量应用的重要光源(见概要:迈向完美的单光子源)。这些纳米级结构还可以解释物理学家无法理解的量子电动力学问题。这类问题包括当 QD 被限制在光子腔中时,QD 激子(由半导体内部的电子和空穴结合而成的准粒子)衰变的相互矛盾的理论预测。现在,现就职于澳大利亚新南威尔士大学的 Alexey Lyasota 和同事为其中一种理论提供了实验支持 [ 1 ]。他们的结果表明,如果不考虑激子光衰变通道之间的干扰,光与物质相互作用的理论描述是不完整的。
大量研究了各类特殊函数(如勒让德多项式)的性质。此外,这个无穷级数似乎不能用简单函数表示,只能用数值计算。总之,在这项工作中,我们研究了由表面电荷密度均匀的“北”半球面产生的静电势的性质。这个问题引起了广大静电学或电动力学领域研究人员和教育工作者的兴趣 20 。我们利用一种数学方法,充分利用了物体的轴对称性,推导出适用于某些特殊情况的静电势的精确紧致解析表达式。我们还推测了空间中任意一点的通解的性质,暗示它可以计算为无穷级数,但不是紧致的解析形式。作为该方法的简单副产品,我们以公式 (12) 中的表达式形式获得了一个有趣的数学积分公式。
TEPCE 是一颗 3U 立方体卫星,旨在探索使用电动力推进航天器的可行性。推进力是通过沿着连接两个航天器末端质量的长线(称为系绳)传导电流产生的。当航天器沿其轨道移动时,地球磁场会在磁场和系绳中的电子之间产生洛伦兹力,从而为航天器提供推力。它不需要化学或其他传统燃料源。TEPCE 是首批自给式电动力推进航天器之一。TEPCE 于 2019 年 6 月 25 日搭载 SpaceX Falcon Heavy 火箭发射。这是一艘成功的航天器,展示了可使航天器利用电动力学原理进行机动的机械和电气系统。
大脑内的意识取决于数百万个神经元的同步活动,但是负责策划此类同步的机制仍然难以捉摸。在这项研究中,我们采用空腔量子电动力学(CQED)在脂质分子尾部的C-H键振动谱中通过级联发射来探索纠缠的双光子发射。结果表明,由髓鞘鞘形成的圆柱腔可以促进从振动模式发出的自发光子发射,并产生大量的纠缠光子对。神经元中的C-H键振动单元的丰度可以作为神经系统的量子纠缠资源的来源。这一发现可能会深入了解大脑利用这些资源进行量子信息传输的能力,从而阐明神经元同步活动的潜在来源。
量子场论是理论物理学许多分支的重要工具。在基础物理学中,量子场论框架结合了狭义相对论和量子力学,以解释物质的亚原子结构和早期宇宙的物理学。在凝聚态物理学中,它提供了多体系统的量子描述。量子场论的第一门课程包括经典场论的介绍、欧拉-拉格朗日方程和诺特定理、狄拉克和克莱因-戈登方程、自由标量、矢量和旋量场的量化;以及从协变微扰理论、S 矩阵和费曼图中选取的一系列主题;量子电动力学中基本过程的计算;相变的场论方法;经典临界性的降维;低维系统中的临界指标;非线性 sigma 模型和拓扑解。
通过腔量子电动力学增强单光子源发射是实现许多量子光学技术中适用发射器的关键。在这项工作中,我们提出了一种灵活方便的腔体制造工艺,该工艺将 SU-8 微带确定性地写入光子晶体波导,其中 InGaAs/GaAs 量子点作为发射器。条带腔在具有选定发射波长的量子点位置处进行激光图案化。进行了微光致发光研究,结果表明,在与单个量子点弱耦合的情况下,发射强度增强了 2.1 倍,时间分辨光致发光进一步显示 Purcell 增强因子为 2.16。因此,该制造工艺被证实是一种将确定性腔耦合引入选定量子点的可靠方法。
通过腔量子电动力学增强单光子源发射是实现许多量子光学技术中适用发射器的关键。在这项工作中,我们提出了一种灵活方便的腔体制造工艺,该工艺将 SU-8 微带确定性地写入光子晶体波导,其中 InGaAs/GaAs 量子点作为发射器。条带腔在具有选定发射波长的量子点位置处进行激光图案化。进行了微光致发光研究,结果表明,在与单个量子点弱耦合的情况下,发射强度增强了 2.1 倍,时间分辨光致发光进一步显示 Purcell 增强因子为 2.16。因此,该制造工艺被证实是一种将确定性腔耦合引入选定量子点的可靠方法。
摘要:我们从手性扰动理论中得出了一种新型的BPS,该理论最少耦合到有限同胞化学潜力的电动力学。在iSospin化学电位的临界值下,量规场的三个一阶差分方程(意味着二阶方程)的系统,可以从饱和界限的要求中得出。这些BPS构型代表具有超导电流支持的量化通量的磁多涡度。相应的拓扑电荷密度与磁通量密度有关,但通过耐药轮廓筛选。这种筛选效果允许这些BPS磁涡流产生的磁场的最大值,为B最大= 2,04×10 14 g。详细讨论了单个BPS涡流的解决方案,并描述了与Ginzburg-Landau理论中临界耦合中Ginzburg-Landau理论中的磁性涡流的比较。
