屏障 相稳定性/性能 (波士顿大学) 识别具有目标电化学性质的相稳定性边界 共烧结 (圣戈班) 将材料整合到堆叠中,确保多孔性、活性、无缺陷的微观结构。改变化学计量以防止界面反应。加速测试 (PNNL) 开发一种探测主要降解机制的协议
使用可充电锂金属阳极的电化学电池对工作温度和电堆压力很敏感。目前的理解通常假设温度驱动锂金属表面化学的变化,而电堆压力影响阳极形态。在本研究中,我们为这些假设提供了量化证据,并提出了指导理解温度和压力对锂金属电池动力学影响的机制。除了压力与力学、温度与动力学的直接耦合之外,我们还探讨了温度对电池力学和电堆压力对电池化学的可能影响。我们使用一系列原位和非原位技术研究了基于 LiDFOB 盐的电解质成分。温度和压力依赖性电池行为的机理映射将有助于开发改进的锂金属电池。© 2022 作者。由 IOP Publishing Limited 代表电化学学会出版。这是一篇开放获取的文章,根据知识共享署名 4.0 许可证(CC BY,http://creativecommons.org/licenses/by/4.0/)的条款发布,允许在任何媒体中不受限制地重复使用作品,只要对原始作品进行适当的引用。[DOI:10.1149/1945-7111/ac91a9]
考虑到多层介电镜的影响,我们评估了单个发射极和光腔内的辐射场之间的精确偶极耦合强度。我们的模型允许一个人自由地改变腔的共振频率,光或原子过渡的频率以及介电镜的设计波长。耦合强度是针对具有未结合频率模式的开放系统得出的。在非常短的空腔中,用于确定其模式体积和定义的长度的有效长度不同,并且也发现与它们的几何长度有明显不同的分歧,并且辐射线在介电镜中最强。对于腔体比其谐振波长长得多,该模式体积通常从其几何长度中采用的模式进行接近。
