截至2024年,使用X-Photoelectron光谱法(XPS),最初称为电子分析(ESCA)的电子光谱(ESCA)已发展为最广泛使用的表面分析方法。在本文中,我们提供了XP的早期发展的观点,并描述了使他们成为我们今天所知道的技术的一些进步和先驱者。包括有关光电光谱,Kai Siegbahn的开创性工作的早期发展的信息,有助于传播兴奋并提供了对方法,商业仪器的早期发展以及对系统元学需求的识别的影响。由于数百名研究人员为推进方法做出了贡献,我们注意到这是我们的观点,可能与其他人选择不同的重点。为了限制范围,我们选择专注于1980年以前贡献的作者。
利用最近开发的 (J. Chem. Theory Comput. 2020, 16, 1215 – 1231) Ad − MD | gVH 方法模拟了乙腈溶液中苝二酰亚胺 (PDI) 染料的光吸收光谱。这种混合量子-经典 (MQC) 方法基于软(经典)/刚性(量子)核自由度的绝热 (Ad) 分离,并将光谱表示为通过广义垂直 Hessian (g VH) 振动电子方法获得的振动电子光谱(对于刚性坐标)的构象平均值(在软坐标上)。该平均值是使用特定参数化的量子力学衍生力场 (QMD-FF) 执行的,针对从经典分子动力学 (MD) 运行中提取的快照进行的。本文对旨在重现灵活分子光谱形状的不同方法的可靠性进行了全面的评估。首先,通过将特定 QMD-FF 和通用可转移 FF 获得的结果与参考气相从头算 MD (AIMD) 的结果进行比较,评估采样构型空间的差异及其对吸收光谱预测的影响,包括纯经典方案(集合平均)和 Ad − MD | gVH 框架。接下来,还获得了溶液中 PDI 动力学的经典集合平均和 MQC 预测,并将其与基于对单个优化苝二酰亚胺结构进行的振动电子计算的“静态”方法的结果进行了比较。在经典的集合平均方法中,用两个 FF 获得的显著不同的采样导致预测光谱的位置和强度都发生了相当大的变化,其中沿 QMD-FF 轨迹计算的光谱与 AIMD 对应光谱非常接近。相反,在 Ad − MD | gVH 理论水平上,不同的采样提供非常相似的振动电子光谱,这表明用通用 FF 获得的吸收光谱中的误差主要与刚性模式有关,因为它可以通过 g VH 执行的二次外推来有效地校正,以沿此类坐标定位基态和激发态势能表面的最小值。此外,从研究PDI染料的自组装过程和大尺寸聚集体的振动电子光谱的角度来看,使用针对分子的QMD-FF似乎也是强制性的,因为在柔性侧链群体中发现的GAFF轨迹存在显著误差,这决定了超分子聚集特性。
众所周知,在三个维薄的杂种结构中,超导体/铁磁铁(S/F)在超导体中诱导的有效Zeeman场抑制了超导性。由于靠近铁磁剂的影响而产生了这个有效的领域。van-der-valsov s/f异质结构是实现与接近效应相关的现象的有前途平台,因为在这种情况下,本节的部分适用于整个材料。由于异质结构中的单层层少量,在这种情况下接近的影响取决于电子光谱对相截面边界的杂交的影响,并且可能与众所周知的三维情况有很大不同。杂交程度,因此,可以通过对快门的压力来控制超导性,这具有极大的科学利益。在超导体中诱导的有效Zeeman场的振幅和迹象也可以通过快门电压完全控制[1]。因此,Van-der-Valsovs S/F-Help和S/F/S-Dagram非常有趣地用于超导Spintronics和Spin Caloritronics。例如,我们证明在这样的鹅蚀术中,可以实现由快门控制的自旋阀效应。
摘要:量子技术的全面发展需要易于制备的材料,在这些材料中可以有效地引发、控制和利用量子相干性,最好是在环境条件下。胶体生长的量子点 (QDs) 的固态多层膜非常适合这项任务,因为可以通过调节尺寸、点间连接器和距离来组装电子耦合 QDs 网络。为了有效地探测这些材料的相干性,需要对它们的集体量子力学耦合态进行动态表征。在这里,我们通过二维电子光谱探索了电子耦合的胶体生长的 CdSe QDs 的固态多层膜的相干动力学,并通过详细的计算对其进行了补充。在环境条件下捕获了多个 QD 上非局域化相干叠加态的时间演化。因此,我们为此类固态材料中的点间相干性提供了重要证据,为这些材料在量子技术中的有效应用开辟了新途径。■ 简介
变量,例如刺激辐射的特征(流感,波长,脉冲持续时间等)以及组成材料(NP的大小和形状)都可以在E-GAS加热和能量释放途径中起关键作用。[23–32]此外,材料探针的温度依赖性(例如电子特异性热,[33-35]界面热诱导性,[36]等)都会影响实际的放松动态。当前对等离子纳米系统中超快松弛过程的理解取决于超快的时间分辨光学的光学,并且在较小程度上是电子光谱镜[28,37-40] [28,37-40],因为这主要产生了有关时间依赖的电子 - 依赖性电子 - 离子或离子静电温度的间接信息。[41,42]另一方面,理论模型正在变得越来越精致,但无法处理,到目前为止,实际系统的复杂性。[3,15,22,43,44]
2。HOMO和异核分子中的结构和键合,包括分子的形状(VSEPR理论)。3。酸和碱的概念,硬柔软的酸碱概念,非水溶剂。4。主要组元素及其化合物:同种异体,合成,结构和粘结,化合物的工业重要性。5。过渡元素和协调化合物:结构,键合理论,光谱和磁性,反应机制。6。内部过渡元素:光谱和磁性特性,氧化还原化学,分析应用。7。有机金属化合物:合成,键合和结构以及反应性。均质催化中的有机金属。8。笼子和金属簇。9。分析化学分离,光谱,电和热器分析方法。10。生物素有机化学:照片系统,卟啉,胆汁酶,氧运输,电子转移反应;氮固定,医学中的金属络合物。11。通过IR,Raman,NMR,EPR,Mossbauer,UV-VIS,NQR,MS,电子光谱和微观技术来表征无机化合物。12。核化学:核反应,裂变和融合,放射分析技术和激活分析。
我的工作重点是利用当今现有的实际材料,对新材料有望在未来实现的先进功能进行原型设计。我们感兴趣的是电子在材料中的行为与铜或硅中的行为根本不同。我的团队开发了制造方案,将复杂复合材料的微观晶体转变为最高质量的微纳米结构,并研究它们的电子和磁性。我们技术的主要工具是聚焦离子束,它使我们能够以纳米精度从这些粒子中雕刻出晶体电路。通过这种方法,我们超越了静态晶体的可能性,并以极端和非线性的方式调整这些材料的量子态。最突出的是,我们对量子材料应用了受控应变和应变梯度,这是在宏观尺度上不可能实现的。这使我们能够调整关联景观、通道密度波或在固体中创建人工规范场。超快猝灭和极端非线性电流改变了电子光谱并诱导了新的亚稳态量子态。
摘要:孔收集的单层由于易于操作,高性能和良好的耐用性而引起了钙钛矿太阳能细胞研究的注意。由于孔收集单层中的分子通常由功能化的缀合的结构组成,因此,当相对于相邻表面面向面对面时,预计孔提取更有效。然而,可靠地控制monayer的分子取向的策略仍然难以捉摸。在这项工作中,使用多种磷酸锚定基团来控制一系列三唑烷衍生物化学在透明导电氧化物电极表面上化学吸附的分子原理。使用液压反射吸收光谱和亚稳定原子电子光谱,我们发现多模导数与电极表面对齐,而单足形对应物采用更倾斜的构型。发现面部方向可促进孔的提取,从而导致倾斜的钙钛矿太阳能电池具有增强的稳定性和高功率转化效率高达23.0%。
上述项目ID ID FIS-2023-02406杯D53C24005490001由MUR通过Bando Fis 2(Advanced la Scienza)资助,旨在建造和运营全新的2D量子材料电子光谱实验室。主要的新颖性是在紫外光子能量范围内起作用的角度逆光发射(ARIPES)设备的构造,其前所未有的分辨率优于40 MeV。该系统将与更传统的角度分辨光发射系统(ARPE)耦合,在与参考技术的相同范围内。单色电子源的可用性(ARIPES所需)和电子分析仪(用于ARPES)允许在同一样品和同一设备中实现电子能量损耗光谱(EELS)测量。ARPE,ARIPES和EEL的组合可以使量子材料的量子态在费米水平以下和高于量子状态的量子状态有效2-维电子结构中的完全观察。此外,鳗鱼可以在费米水平上提供2个粒子光谱函数。最后,在同步梁线上以相似分辨率执行的共振非弹性X射线散射(RIX)可以通过确定诸如Phonons和Magnons之类的集体激励来补充在“上面F”实验室中测得的数据。
自 2019 年春季以来,瑞典隆德 MAX IV 实验室的 FinEstBeAMS 光束线已为用户提供了一套由电子分光计和用于稀释样品的离子飞行时间质谱仪组成的实验装置。该装置使用户能够研究原子、分子、(分子)微团簇和纳米粒子与短波长(真空紫外和 X 射线)同步辐射的相互作用,并跟踪这种相互作用引起的电子和核动力学。对 N 2 和噻吩 (C 4 H 4 S) 分子的测试测量表明,该装置可用于多粒子巧合光谱。通过线性水平和垂直偏振对 Ar 3 p 光电子谱的测量表明,也可以进行角度分辨实验。还展示了在同一实验过程中比较 Co 2 O 3 和 Fe 2 O 3 中 Co 和 Fe L 2,3 吸收边处稀释样品与固体靶的电子光谱结果的可能性。由于 FinEstBeAMS 光束线的光子能量范围从 4.4 eV 延伸到 1000 eV,因此可以在非常宽的光子能量范围内执行电子、离子和巧合光谱研究。