Scholl 反应 1 是一种合成多环芳烃的有效方法,可在一步中形成多个碳 - 碳键。通过自由基阳离子机理 2 进行的 Scholl 反应对底物内电子密度的分布非常敏感,氧化芳族偶联发生在电子密度最高的位置。3 基于这一概念,我们最近证明,通过在底物中引入萘部分可以促进 Scholl 反应,从而产生高度弯曲的多环芳烃。4,5 在此,我们通过展示成功合成前所未有的芳香鞍形物(图 1 中的 1)来扩展这一策略的范围,这是通过在 Scholl 反应的底物中加入萘基来实现的。芳香鞍形物,也称为负弯曲多环芳烃,最近受到越来越多的关注 6,7,原因有两个。首先,它们代表碳黑石中的片段 8
具有巡回自由度和本地化自由度的量子材料表现出许多异国情调的相位和过渡,它们偏离了金茨堡 - 兰道范式。这项工作使用复合算子形式 - ISM检查双层强烈相关的哈伯德模型。我们观察到层对称性的自发断裂,其中层中的电子密度达到半填充,从而导致层选择性莫特相(LSMP)。这个断裂的对称阶段在远离半填充的临界平均电子密度下变得不稳定。此外,显着的层分化持续到中等的层间跳,超越该系统突然过渡到层均匀相(LUP)。在LSMP相中,两层中的电子被弱杂交,导致小费米表面。在从LSMP到均匀相的过渡时,费米表面的体积跳跃。我们还讨论了导致不同扰动下LSMP阶段崩溃的物理机制。
在2016年,多明哥提出了分子电子密度理论(MEDT)[1]作为一种新理论,与广泛的前沿分子轨道(FMO)理论相反,[2]以解释有机化学反应性。根据MEDT的说法,决定了任何化学事件的是电子密度的变化,而不是分子轨道相互作用。Medt已经挑战了许多传统概念,例如协调[3]和周环机制,[4]表明需要对有机化学反应性进行现代重新解释。在[3+2]环加成(32CA)反应的领域中,MEDT允许将一般分类分类为四种不同类型,这取决于所涉及的三个原子组件(TAC)的新结构/反应性关系(见图1)。[5]在本谈话中,我将显示MEDT在研究32CA反应中的应用。除了探索MEDT研究中最常使用的一些量子化学工具的实际应用外,还将强调这些相关的有机反应的新合理化[5],以及如何与当前的教科书描述进行比较。
摘要 — 将美国国家标准与技术研究所 (NIST) 生产的几种石墨烯量化霍尔电阻 (QHR) 器件与美国国家先进工业科学与技术研究所 (AIST) 的 GaAs QHR 器件和 100 Ω 标准电阻进行了比较。100 Ω 电阻与石墨烯 QHR 器件的测量值与通过 GaAs 测量获得的 100 Ω 电阻值的误差在 5 nΩ/Ω 以内。在 AIST 调整了石墨烯器件的电子密度,以恢复器件特性,使其能够在 4 T 至 6 T 的低磁通密度下运行。 此调整是通过 NIST 使用的功能化方法完成的,允许通过简单的退火对石墨烯 QHR 器件进行一致的可调性。这种方法取代了调整石墨烯以适应计量学的较旧且不太可预测的方法。里程碑式的成果表明,石墨烯可轻松用于在许多国家计量机构之间进行电阻比较测量。索引术语 — 量化霍尔电阻、外延石墨烯、低温电流比较器、电子密度、标准电阻
摘要 — 将美国国家标准与技术研究所 (NIST) 生产的几种石墨烯量化霍尔电阻 (QHR) 器件与美国国家先进工业科学与技术研究所 (AIST) 的 GaAs QHR 器件和 100 Ω 标准电阻进行了比较。100 Ω 电阻与石墨烯 QHR 器件的测量值与通过 GaAs 测量获得的 100 Ω 电阻值的误差在 5 nΩ/Ω 以内。在 AIST 调整了石墨烯器件的电子密度,以恢复器件特性,使其能够在 4 T 至 6 T 的低磁通密度下运行。 此调整是通过 NIST 使用的功能化方法完成的,允许通过简单的退火对石墨烯 QHR 器件进行一致的可调性。这种方法取代了调整石墨烯以适应计量学的较旧且不太可预测的方法。里程碑式的成果表明,石墨烯可轻松用于在许多国家计量机构之间进行电阻比较测量。索引术语 — 量化霍尔电阻、外延石墨烯、低温电流比较器、电子密度、标准电阻
具有可视化化学,结构和神经生物学至关重要的纳米级亚细胞结构。尤其是四氧化os已被广泛用于选择性脂质成像。尽管使用无处不在,但脂质膜中的oSmium物种形成以及电子显微镜(EM)中图像对比的机制始终是开放的问题,限制了改善染色方案并改善生物样品的高分辨率成像的努力。以我们最近的成功使用光发射电子显微镜(PEEM)来对小鼠脑组织进行15 nm的亚细胞分辨率图像,我们已经使用PEEM来确定脂质膜中OS染色的化学对比机制。os(iv)以OSO 2的形式产生脂质膜中的聚集体,导致了状态的电子结构和电子密度的强烈空间变化。OSO 2具有金属电子结构,可逐渐增加费米水平附近状态的电子密度。将金属OSO 2沉积在脂质膜上,可以强烈增强生物材料的EM信号。膜对比机械的这种不明显
基于Hybrid Inas Josephson连接(JJS)的超导电路在快速和超低功率消耗固态量子电子设备和探索新型物理现象的设计中起着主角的作用。常规上,使用INA制成的3D基材,2D量子井(QW)和1D纳米线(NWS)用于与混合JJS创建超导电路。每个平台都有其优点和缺点。在这里,提议将Inas-ins-on-insun-unsulator(Inasoi)作为开发超导电子产品的开创性平台。具有不同电子密度的半导体INA的表层呈现到Inalas变质的bu效中,有效地用作低温绝缘子,以将相邻的设备电气解除。JJ是使用Al作为超导体和具有不同电子密度的INA的。的开关电流密度为7.3μm-m-1,临界电压为50至80μV,临界温度与所使用的超导体的临界温度相当。对于所有JJS,开关电流都遵循带有平面外磁场的Fraunhofer样图案。这些成就使使用Inasoi可以使用高临界电流密度和出色的门控性能设计和制造表面暴露的Josephson场效果。
研究了使用两种方法合成的方解石样品的内部结晶度:溶液沉淀法和碳酸铵扩散法。扫描电子显微镜 (SEM) 分析表明,使用这两种方法沉淀的方解石产品具有明确的菱面体形状,与矿物的自形晶体习性一致。使用布拉格相干衍射成像 (BCDI) 表征这些方解石晶体的内部结构,以确定 3D 电子密度和原子位移场。使用碳酸铵扩散法合成的晶体的 BCDI 重建具有预期的自形形状,具有内部应变场和少量内部缺陷。相反,通过溶液沉淀合成的晶体具有非常复杂的外部形状和有缺陷的内部结构,呈现出零电子密度区域和明显的位移场分布。这些异质性被解释为由非经典结晶机制产生的多个结晶域,其中较小的纳米颗粒聚结成最终的自形颗粒。SEM、X 射线衍射 (XRD) 和 BCDI 的结合使用允许在结构上区分用不同方法生长的方解石晶体,为了解晶粒边界和内部缺陷如何改变方解石反应性提供了新的机会。
他们还发现了另一个不寻常的电子现象:整数量子异常霍尔在多种电子密度中的效应。分数量子异常霍尔效应被认为是在电子“液体”相中出现的,类似于水。相比之下,团队现在观察到的新状态可以解释为电子“固体”阶段 - 与电子“冰”的形成相互作用 - 当系统的电压在超低温度下仔细调谐时,该状态也可以与分数量子异常的霍尔同存。
在这里,b k = k / | K |和| K | ≃k f。此外,我们已经使用了D(µ +ξk)≃d(E F)= CONST,因为功能∂f0 K /∂EK仅在化学势µ周围狭窄的能量间隔〜k b t中有限,并且我们将较低的集成极限设置为−∞,因为通常将较低的集成极限设置为金属的µ / 2 k b t t ≫1。显然,我们获得了预期的结果,即粒子密度是由正常金属的电子密度给出的。