Lucy Collinson 博士是一名电子显微镜专家,拥有微生物学和细胞生物学背景。她拥有医学微生物学学位和博士学位,并在医学研究委员会 (MRC) 分子细胞生物学实验室 (UCL) 和伦敦帝国理工学院与 Colin Hopkins 教授一起进行博士后研究,研究哺乳动物细胞中溶酶体相关细胞器的膜运输途径,使用光学和电子显微镜作为关键技术。自 2004 年以来,她先后在伦敦大学学院和英国癌症研究中心伦敦研究所管理一系列生物电子显微镜设施,该研究所于 2015 年成为新弗朗西斯克里克研究所的一部分。她与一支电子显微镜专家和物理学家团队一起,负责监督克里克研究所内 60 多个研究小组的 100 多个研究项目,对从蛋白质到整个生物体的多个尺度进行成像。她在显微镜和技术开发方面的兴趣包括体积电子显微镜、相关成像技术、低温显微镜、X 射线显微镜、图像分析以及显微镜设计和原型设计。她的团队正在利用公民科学收集数十万个电子显微镜图像注释,以训练深度机器学习算法,通过 Zooniverse 平台上的 Etch a Cell 项目自动识别电子显微镜图像中的细胞器。她与他人合作撰写了 100 多篇研究和评论论文,发表了 70 多场受邀和主题演讲,并担任 30 多个高级成像国际顾问委员会、小组和委员会成员。
CAMMA 涉及电子显微镜应用和开发领域的研究。借助 CAMMA 最先进的电子显微镜,我们能够观察单个原子、分子水平的结构、材料的化学性质以及有关物理和化学性质的信息。与赛默飞世尔科技合作开展了多项研究项目。一些项目涉及使用电子显微镜观察各种不同类型的材料、开发在电子显微镜中分析材料的方法、在显微镜中激活系统的新方法、如何关联来自不同系统的信息等。
抽象球样二氧化葡萄纳米颗粒是通过热液法合成的。使用各种技术研究了所得的样品,包括X射线粉末衍射光谱(XRD),高分辨率扫描电子显微镜(HRSEM),能量分散X射线光谱(EDX),电子显微镜(TEM)和Ultraviolet可见吸收光谱(UVIS)。通过X射线衍射分析确定,立方荧光岩的晶体结构及其平均粒径范围在10-20 nm之间。使用高分辨率扫描电子显微镜测定二氧化岩纳米颗粒的直径。透射电子显微镜显示,二氧化岩纳米颗粒是球形的,直径约为15.3 nm。能量分散性X射线光谱显示出高度纯的二氧化岩纳米结构。通过紫外可见的吸收光谱估计二氧化岩岩的带隙能量为3.34 eV。此外,通过价带孔的作用,实现了刚果红色染料的最大光催化活性和最大光降解效率。
“电子显微镜视角下创新材料高级表征”初级教授职位 Institut Neel CNRS,法国格勒诺布尔 CNRS 预计将在 2024 年上半年开放一个初级教授职位,在 4 个最近获得最先进透射电子显微镜 (TEM) 的实验室之间的竞争中,包括 Institut Néel。因此,Institut Néel 正在寻找一位优秀且积极主动的候选人来加强对 TEM 高级表征的研究活动。Institut Neel 拥有一个 Jeol NEOARM,它在光谱、电场和磁场测量方面提供了特殊的可能性,可以与不同的原位选项相结合(加热、冷却和电偏置已经可用),实验室希望发展其在光谱方面的活动,同时也发展原位/原位分析(催化、生长、液体介质、电池运行等)。 NEOARM 配备了冷 FEG,可在 60 至 200 kV 的电压下运行,并配备了 STEM 像差校正器、多个 STEM 探测器(包括用于差分相衬的 8 段探测器、广角 EDX 探测器、用于电子能量损失光谱的 GIF 连续光谱仪、用于电子全息照相的双棱镜、Gatan Oneview 相机、使用 Medipix 3 技术的直接电子探测器、电子束感应电流以及电子束进动。提供多个样品架,可进行断层扫描、倾斜旋转、在氮气和氦气(正在开发中)温度下冷却,以及加热和原位电偏置。
术语 TiN:氮化钛 MgO:氧化镁 TMN:过渡金属氮化物 FCC:面心立方 B1:岩盐结构 UHV:超高真空 TEM:透射电子显微镜 STEM:扫描透射电子显微镜 HAADF:高角度环形暗场 DFT:密度泛函理论 MEAM:改进的嵌入原子方法 XRD:X 射线衍射 ToF-ERDA:飞行时间弹性反冲检测分析 BF:明场 FIB:聚焦离子束 SEM:扫描电子显微镜 FFT:快速傅里叶变换 DOS:态密度 FWHM:半峰全宽 GSFE:广义堆垛层错能 OP:重叠布居
Datye 在电子显微镜方面的专业知识无疑是获得资金的关键,但他说,正是他在合作、提案撰写和了解大型项目如何获得资助方面的丰富经验才促成了成功。尽管由于疫情而有所延迟,但显微镜于 2021 年安装在 UNM 物理、天文学和跨学科科学 (PAIS) 大楼内定制设计的电子显微镜和 X 射线衍射套件中。大楼内的空间在疫情前不久完工,可控制振动、冷却和电磁场要求,并位于中心位置以鼓励跨学科工作。与地球和行星科学杰出教授 Adrian Brearley 的长期合作使该团队能够为 UNM 研究人员提供先进的电子显微镜工具
b浸出的棉织物已用辣木叶提取物预先治疗,作为天然生物活性材料,以赋予织物双抗菌和日晒特性。织物是用二氧化钛纳米颗粒(TIO 2 NP)和氧化锌纳米颗粒(ZnONPS)分别用浓度为2wt。%和1 wt。%和1 wt。%,在1,2,3,3,3,3,3,4-二苯甲烷基二羧酸(btaCA)的情况下,均采用了非固定剂,该方法是通过非固定剂的涂抹量。通过使用扫描电子显微镜和X射线衍射,扫描电子显微镜(SEM和EDX),机械性能(断裂时的拉伸强度和伸长),粗糙度,超级保护因子(Ultra-Violet Protection rigistion(UPF)),通过使用扫描电子显微镜和X射线衍射,扫描电子显微镜(SEM和EDX)来评估处理的棉织物。此外,使用磁盘抑制区评估抗菌活性的织物。研究输出揭示了用辣木提取物治疗的织物,然后用二氧化钛纳米氧化物粉末显示出最佳效果。
随后,这些组织样本在加州大学圣地亚哥分校的 Hibbs 实验室和最近开放的 Goeddel Family Technology Sandbox 进行分析,该实验室配备了先进的低温电子显微镜 (cryo-EM) 仪器。低温电子显微镜快速冷却组织,将样本“冻结”在原地,从而以新的方式可视化其他方式无法实现的复杂细节。研究人员还使用电生理学测量 GABA A 受体如何发挥作用以及对药物的反应。
