我们探索了轨道角动量(OAM)在第一个诞生近似中从扭曲的光束到原子电离的电子的过程。无论检测方案如何,都研究了弹出电子的特性。我们发现,当单个原子位于光子的传播轴上时,即将发出的电子具有OAM的确定投影,而电子波包的大小仅由光子的能量而不是其横向相干性长度决定。移动原子的位置会产生电子oAM的有限分散。我们还研究了一个更具实验性可行的场景(一个局部有限尺寸的原子目标),并开发了描述相干和不连贯的光电离心方案的代表性方法。
执行摘要 未来电力系统中基于电力电子的资源将显著增加。这些资源将包括可变可再生能源,例如太阳能光伏和风能;电池储能;以及终端使用负载,包括电动汽车 (EV) 和带变频驱动器的电动机。尽管基于电力电子的资源为电网提供了可再生能源和高效的终端使用设备,但由于系统惯性显著降低,它们在维持电网稳定性方面带来了困难。在供应或需求突然转变的情况下,低惯性电力系统可能会经历更严重的电网频率变化。需要额外的频率响应来缓解这些变化并保持电网稳定性。
分子电子的领域与使用分子术的使用来允许,控制和操纵两个电极之间的电气传输。[1,2]探索的基本工具是电极|分子|电极“分子连接”。[3–6]分子连接的设计与追求分子电子的早期动机对齐,这一直基于以下概念:适当设计的分子可以作为执行电路元件的基本功能的一个(或更多)。为此,执行电线功能的分子,[7]开关,[8]二极管,[9]直径,[10]晶体管,[11],[11]和高效的电阻[12] [12]及其在连接中的电特性。最近的注意力已转向分子连接的特性,这些连接范围延伸到了电气的模仿
• 在这个模型中,固体中的所有原子都共享近乎自由的价电子。因此,有一片自由电子“海洋”在四处游动,这些电子的电位几乎恒定且模糊不清。
一个典型的电离室由两个电荷板和一个放射源(通常为Americium 241)组成,用于电离板之间的空气。(见图1)放射性源散发出与空气分子一起散发并移出电子的颗粒。由于分子损失电子,它们会变成正带的离子。随着其他分子获得电子的产生,它们变成负电荷的离子。创建了相等数量的正离子和负离子。带正电的离子被带负电荷的电板吸引,而带负电荷的离子被带带正电荷的板吸引。(见图2.)这会产生一个小电离电流,可以通过连接到板的电路(检测器中的“正常”条件)来测量。