摘要 早在 2012 年,Blom 等人就报道 (Nature Materials 2012, 11, 882) 半导体聚合物中的一般电子陷阱密度约为 3 × 10 17 cm −3 ,中心能量为低于真空度 ≈3.6 eV。有人提出,陷阱具有外部来源,水-氧复合物 [2(H 2 O)-O 2 ] 是可能的候选者,因为它具有电子亲和力。然而,缺乏进一步的证据,通用电子陷阱的起源仍然难以捉摸。本文在聚合物二极管中研究了可逆电子陷阱的温度依赖性,该陷阱在偏置应力下在数分钟内缓慢发展到 2 × 10 17 cm −3 的密度,中心能量为低于真空度 3.6 eV。陷阱形成动力学遵循 3 阶动力学,与陷阱通过三个扩散前体粒子相遇形成的理论一致。通用陷阱和缓慢演化的陷阱之间的一致性表明,半导体聚合物中的一般电子陷阱是通过氧和水分子之间的三重相遇过程形成的,该过程形成了建议的 [2(H 2 O)-O 2 ] 复合物作为陷阱起源。
克里斯·梦露(Chris Monroe)曾与基于离子的Qubits合作从事量子计算设备,他说,这项工作是“引人注目的”,但强调,在成为可行的技术之前,“未来还有很多剩余的挑战”。电子只有一个内部的“旋钮”(他们的旋转),而不会像离子状态一样,用激光束进行读写操作,无法通过激光束进行操纵。但是,哈夫纳说,为此而不是激光使用基于芯片的磁性操作实际上可以简化技术。Monroe补充说,将电子系统的元素与被困离子的元素结合在一起意味着电子量子位“希望可以采用两者中最好的”。