我们最近开发出了第一种非侵入性技术,它可以通过等离子体增强暗场 (DF) 纳米光谱在纳米尺度和环境条件下原位追踪材料形貌。[28–30] 在这里,我们利用纳米拉曼和纳米光致发光提供的附加功能对其进行扩展,以研究 MoS 2 中的切换机制。该方法的原理如图 1a 所示。将一个 80 nm 的金纳米粒子 (AuNP) 放置在金基底附近,用白光 (λ ≈ 400–900 nm) 照射,以在 AuNP 内产生等离子体共振 (单模),并在 AuNP 和基底之间的间隔物中产生等离子体共振 (间隙模式)。[31,32] 使用 DF 散射显微镜配置检测共振,间隙模式的波长和强度取决于间隔物的折射率、厚度和几何形状。 [31,32] 使用 AuNP 作为电开关的纳米尺寸(≈ 700 nm 2 )顶部触点 [29,33] 会导致纳米级开关通道内局部出现强场增强。这大大增强了拉曼和光致发光 (PL) 信号,[34] 方便地突出了原本无法检测到的纳米级开关动力学。文献中提出了许多针对 MoS 2 的开关机制,如表 1 所示。这些机制包括硫空位(VS)的迁移[3,9,10]、氧化 MoS 2 中氧的运动[6,12]、电荷捕获和脱捕获[2]、从半导体(2H)到金属(1T')的相变[4,7]、以及金属离子从电极中嵌入[5,13,17,18,20]。我们注意到,所有上述机制都会引起光信号(拉曼,PL)的变化,这些变化可以通过我们的实验能力检测到。特别是,通过透射电子显微镜(TEM)研究的所有 MoS 2 纳米片中都观察到的 VS 密度[36–38]与 ≈ 750 nm 处的 PL 峰[39,40]、MoS 2 的 A/B 激子的强度比[39,41]相关
尽管基于 PCM 的光子器件和电开关取得了重大进展,但将 PCM 集成到标准光子代工工艺中代表了 PCM 的一个重要技术里程碑。代工工艺集成不仅是实现 PCM 器件可扩展制造的切实途径,而且还使整个光子学界能够轻松获得 PCM 组件。值得注意的是,PCM 具有非外延性质和低加工温度,因此很容易实现 CMOS 后端集成,这从它们与 3D XPoint 内存架构的无缝集成中可以看出。我们预计,实现这一里程碑将大大加快 PCM 与大型交换矩阵的集成,并开辟新兴应用,例如任意波前合成、节能光交换和路由、量子光网络以及可扩展神经形态计算。
摘要。Diffie-Hellman协议是由Whitfield和Martin Hellman提出的。diffie和Hellman想要一个数学函数,其中加密和解密并不重要,即(𝑔(𝑥))=𝑔。存在这样的功能,但主要是双向,即查找逆函数很容易工作,例如。这样的功能为𝑓(𝑥)=2𝑥这些函数的实际示例是电开关。但是,这些功能在密码学中不可用。最重要的是所谓的单向函数的混凝土形式。这些功能似乎可以找到它们的逆函数,这些功能是通过复杂过程找到的。因此,对于给定的𝑥,我们可以轻松计算𝑓(𝑥),但是对于给定的𝑓(𝑥),很难测量𝑥,但是如果已知秘密值,那么直接值和逆值都很容易计数。模块化算术是指大量此类单时间函数的存在。因此,在本节中,我们将探索以找到此类功能。关键字:单向,逆,加密,DH协议。
顾名思义,悬臂梁 MEMS 开关是一种由机械位移控制的电开关。它由两个主要部分组成:底座和悬臂梁(图 1)[1]。悬臂梁由导电材料制成(或其一部分,取决于设计),通常是铝。底座上沉积有一层导电材料层。在设备的这两个导电部分之间施加电压后,形成一个有限平行板电容器 [2, 3],由于电容器板之间的静电吸引力 [4, 5],悬臂梁开始向底座弯曲。悬臂梁以弹性反作用力 [6] 作出反应,并在两个力抵消的位置停止。在某个电压(驱动电压)[7–10] 下,力之间的平衡变得不稳定,悬臂梁在底座上坍塌 [11],从而建立电容器板之间的接触并闭合电路。在该模型中,认为下电极上没有沉积介电层(因此极化电荷可以忽略不计 [12])。新的理论模型考虑了有限平行板电容器中的边缘效应。将理论上获得的驱动电压与计算机模拟的 MEMS 设备驱动电压进行了比较。
OCEC 将消防安全关闭纳入其火灾缓解计划 在整个西部和这里的梅特霍谷,更长、更干燥、更危险的火灾季节已成为新常态。为此,OCEC 制定了一项火灾缓解计划。该计划致力于降低地役权外的树木和电线周围所需的净空区进入架空线路并形成火源的风险。这些行动基于加州公用事业公司为应对其所在地区最近发生的火灾而制定的类似计划。最近,俄勒冈州的 2020 年火灾促使 OCEC 将消防安全关闭 (FSS) 的可能性添加到其火灾缓解计划中。背景 OCEC 有一个持续的通行权维护计划,以管理对电线构成威胁的植被。OCEC 通过在 2019 年和 2021 年再次引入外部林务员来勘测线路和地役权外的树木,从而增强了该计划。 OCEC 还依靠会员通知我们,在刮风的日子里,大树枝或危险树木可能会从线路上掉下来。如果您遇到这些情况,请向 OCEC 办公室报告。除了植被管理外,OCEC 还将采取额外措施,在红旗条件下关闭变电站重合闸,以最大限度地降低火灾风险。重合闸是一种自动高压电开关,其工作原理与家中的断路器非常相似。当家用断路器跳闸时,它将保持关闭状态,直到手动复位。重合闸将通过自动闭合来测试电线,以查看问题是否已消除,如果问题只是暂时的,重合闸将保持闭合状态,电源将保持开启状态。此操作有时在您的家中被视为“闪烁”。为了减轻火灾风险,OCEC 将重合闸置于“非重合闸”状态,因此当可能出现问题时,断路器将运行,线路将断电,直到 OCEC 工作人员可以手动检查线路是否存在问题。一旦手动检查线路,发现一切正常,线路将重新通电。这可能会导致更长、更频繁的停电。此外,某些偏远森林地区的重合器将在干燥条件允许时关闭。消防安全关闭消防安全关闭 (FSS) 是指公用事业公司主动切断架空线路的电源,这样如果树木倒在线路上,就不会发生故障(并可能导致火灾)。在某些红旗/大风条件下会发生这种情况。地役权外的树木可能会倒在线路上,这是最大的担忧。