我们最近开发出了第一种非侵入性技术,它可以通过等离子体增强暗场 (DF) 纳米光谱在纳米尺度和环境条件下原位追踪材料形貌。[28–30] 在这里,我们利用纳米拉曼和纳米光致发光提供的附加功能对其进行扩展,以研究 MoS 2 中的切换机制。该方法的原理如图 1a 所示。将一个 80 nm 的金纳米粒子 (AuNP) 放置在金基底附近,用白光 (λ ≈ 400–900 nm) 照射,以在 AuNP 内产生等离子体共振 (单模),并在 AuNP 和基底之间的间隔物中产生等离子体共振 (间隙模式)。[31,32] 使用 DF 散射显微镜配置检测共振,间隙模式的波长和强度取决于间隔物的折射率、厚度和几何形状。 [31,32] 使用 AuNP 作为电开关的纳米尺寸(≈ 700 nm 2 )顶部触点 [29,33] 会导致纳米级开关通道内局部出现强场增强。这大大增强了拉曼和光致发光 (PL) 信号,[34] 方便地突出了原本无法检测到的纳米级开关动力学。文献中提出了许多针对 MoS 2 的开关机制,如表 1 所示。这些机制包括硫空位(VS)的迁移[3,9,10]、氧化 MoS 2 中氧的运动[6,12]、电荷捕获和脱捕获[2]、从半导体(2H)到金属(1T')的相变[4,7]、以及金属离子从电极中嵌入[5,13,17,18,20]。我们注意到,所有上述机制都会引起光信号(拉曼,PL)的变化,这些变化可以通过我们的实验能力检测到。特别是,通过透射电子显微镜(TEM)研究的所有 MoS 2 纳米片中都观察到的 VS 密度[36–38]与 ≈ 750 nm 处的 PL 峰[39,40]、MoS 2 的 A/B 激子的强度比[39,41]相关
除了基本的 ON/OFF 电源切换之外,典型的 SSPC 还提供许多保护功能,包括快速短路保护,使电路停用时间达到 1 mS 左右。电路停用涉及在 500 µS 至 1mS 的时间内逐渐移除通道的开关 MOSFET 栅极驱动,以最大限度地减少 EMI 辐射。参考图 1,对于过载保护,SSPC 实施“I 平方 t”(I 2 t)检测方法来保护电线和负载,同时仍可防止高浪涌电流切换到电机、螺线管、电容负载(如电子电源)或白炽灯泡负载,从而导致“误跳闸”。借助 I 2 t 保护,当测量的负载电流为额定电流的十倍或更多时,SSPC 将立即跳闸。对于较低的电流值,SSPC 的处理器会执行连续计算,从而导致在负载电流为额定值一至十倍的过载情况下跳闸时间更长。
0.5 – 10 s 0.02 – 0.5 s t 0 无时间延迟 t 0 无时间延迟 t 3 从后沿开始的关闭延迟 t 1 从物体后沿开始的关闭延迟 物体边缘 t 4 从物体前沿开始的开启延迟 t 2 从物体前沿开始的开启延迟 物体边缘 t 3 + t 4 关闭和开启延迟 t 1 + t 2 关闭和开启延迟